动载荷作用下的轴颈涡动与滑动轴承瞬态油膜力耦合机制研究

李强1,张硕1,王玉君1,许伟伟2,王振波1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (24) : 158-164.

PDF(1631 KB)
PDF(1631 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (24) : 158-164.
论文

动载荷作用下的轴颈涡动与滑动轴承瞬态油膜力耦合机制研究

  • 李强1,张硕1,王玉君1,许伟伟2,王振波1
作者信息 +

Coupling mechanism analysis between shaft whirling and transient oil film force of journal bearings under dynamical load

  • LI Qiang1,ZHANG Shuo1,WANG Yujun1,XU Weiwei2,WANG Zhenbo1
Author information +
文章历史 +

摘要

滑动轴承瞬态油膜力既是转子-轴承系统阻尼的主要来源,也是导致机组稳定性下降的重要原因。针对大扰动下的动网格更新问题,采用一种适用于固定瓦轴承的新型结构化动网格技术,建立了动载荷作用下滑动轴承非线性瞬态油膜力的CFD模型,该模型中采用“全空化模型”描述润滑介质的空化。针对圆柱形轴承和多油楔滑动轴承分析了轴颈涡动与瞬态油膜力之间的相互作用机制。结果表明:非线性油膜力支撑下,计算得到静平衡位置结果与试验结果的偏差小于2.5%,说明了该模型可以较为准确的描述转子-滑动轴承系统;非线性油膜力支撑下,动载荷对于转子稳定性有明显影响,当动载荷较小时,在轴颈涡动过程中油槽会严重削弱径向、切向油膜力;随着动载荷的增加,油槽的作用减小,径向、切向油膜力逐渐增加,进而抑制半速涡动;对于多油楔滑动轴承,油槽的影响相对较小,故而油膜力可以提供足够的刚度和阻尼,以保持较高的稳定性。

Abstract

Transient oil film force is the main damping source of a rotor-bearing system, and also an important reason for instability.Firstly, a new structured dynamic mesh method was presented for mesh updating.Based on this method, a CFD model for nonlinear transient oil film force under dynamical load was established.The cavitation was described by the "full cavitation model".Then the coupling mechanism between shaft whirling and transient oil film force was analyzed for circular and multi-wedge journal bearings.Results indicate that the deviation between the calculated results of the static equilibrium position and the experimental results is less than 2.5%.Under the support of nonlinear oil film force, the dynamic load has an obvious influence on the stability of the rotor.When the dynamic load is small, the oil tank seriously weakens the radial and tangential oil film force in the shaft whirling process.With the increase of dynamic load, the influence of the oil wedge decreases, the radial and tangential oil film force increase gradually, and the half speed whirling can be suppressed.For multi-wedge bearings, the influence of the oil tank is relatively small, so the oil film force can provide enough stiffness and damping to maintain stability.

关键词

滑动轴承 / 轴颈涡动 / 瞬态油膜力 / 动网格 / 计算流体力学(CFD)

Key words

journal bearing / rotor whirling / transient oil film force / dynamic mesh method / computational fluid dynamics(CFD)

引用本文

导出引用
李强1,张硕1,王玉君1,许伟伟2,王振波1. 动载荷作用下的轴颈涡动与滑动轴承瞬态油膜力耦合机制研究[J]. 振动与冲击, 2019, 38(24): 158-164
LI Qiang1,ZHANG Shuo1,WANG Yujun1,XU Weiwei2,WANG Zhenbo1. Coupling mechanism analysis between shaft whirling and transient oil film force of journal bearings under dynamical load[J]. Journal of Vibration and Shock, 2019, 38(24): 158-164

参考文献

[1] 毛文贵, 李建华, 刘桂萍,等. 考虑油膜不确定性的滑动轴承-转子系统不平衡量识别[J]. 振动与冲击, 2016, 35(18):214-221.
MAO Wengui,LI Jianhua,LIU Guiping,et al. Unbalance parameters identification for a sliding bearing-rotor system considering the uncertainty of parameters[J]. Journal of vibration and shock, 2016, 35(18):214-221.
[2] 杨国安. 滑动轴承故障诊断实用技术[M]. 北京:中国石化出版社, 2012.
YANG Guoan. Practical technique for fault diagnosis of sliding bearing[M].Beijing: Sinopec press,2012.
[3] Newkirk B L, Taylor H D. Shaft whipping due to oil action in journal bearing[J]. General Electric Review, 1925,28:559-568.
[4] Lund J W. The stability of an elastic rotor in journal bearings with flexible, damped supports[J]. Journal of Applied Mechanics, 1965,32(4):911-920.
[5] 钟一谔等. 转子动力学[M]. 清华大学出版社, 1987.
ZHONG Yie et al. Rotor dynamics[M].Beijing: Tsinghua university press,1987.
[6] Castro H F D, Cavalca K L, Nordmann R. Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model[J]. Journal of Sound and Vibration, 2008,317(1):273-293.
[7] 马辉, 李辉, 牛和强,等. 滑动轴承-转子系统油膜失稳参数影响分析[J]. 振动与冲击, 2013, 32(23):100-104.
MA Hui,LI Hui,NIU He-qiang,et al. Parametric influence analysis of oil-film instability in a sliding bearing-rotor system[J]. Journal of vibration and shock, 2013, 32(23):100-104.
[8] Cha M, Kuznetsov E, Glavatskih S. A comparative linear and nonlinear dynamic analysis of compliant cylindrical journal bearings[J]. Mechanism and Machine Theory, 2013,64(6):80-92.
[9]王永亮, 崔颖, 韩聿,等. 转子-滑动轴承系统动力学相似性研究[J]. 振动与冲击, 2017, 36(1):153-160.
WANG Yongliang,CUI Ying,HAN Yu1,et al. Dynamic similarity of rotor-sliding bearing systems[J]. Journal of vibration and shock, 2017, 36(1):153-160.
[10] Lin Q, Wei Z, Wang N, et al. Analysis on the lubrication performances of journal bearing system using computational fluid dynamics and fluid–structure interaction considering thermal influence and cavitation[J]. Tribology International, 2013,64(3):8-15.
[11] Zou L, Liu Z, Huang L. Influence of stern shaft inclination on the colling performance of water-lubricated bearing[J]. China Shiprepair, 2016,63:2024.
[12] Wang Y, Yin Z, Gao G, et al. Analysis of the performance of worn hydrodynamic water-lubricated plain journal bearings considering cavitation and elastic deformation[J]. Mechanics & Industry, 2017,18(5):508.
[13] Mo J, Gu C, Pan X, et al. A Thermohydrodynamic Analysis of the Self-Lubricating Bearings Applied in Gear Pumps Using Computational Fluid Dynamics Method[J]. ASME Journal of Tribology, 2018,141(1).
[14] Guo, Zenglin, Hirano, et al. Application of CFD Analysis for Rotating Machinery—Part I: Hydrodynamic, Hydrostatic Bearings and Squeeze Film Damper[J]. Journal of Engineering for Gas Turbines & Power, 2005,127(2):445-451.
[15] Gertzos K P, Nikolakopoulos P G, Papadopoulos C A. CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant[J]. Tribology International, 2008,41(12):1190-1204.
[16] 熊万里, 侯志泉, 吕浪, 等. 基于动网格模型的液体动静压轴承刚度阻尼计算方法[J]. 机械工程学报, 2012,48(23):118-126.
XIONG Wanli,HOU Zhiquan,LV Lang et al. Method for Calculating Stiffness and Damping Coefficients of HybridBearings Based on Dynamic Mesh Model[J]. Journal of mechanical engineering, 2012,48(23):118-126.
[17] Cheqamahi J M, Nili-Ahmadabadi M, Akbarzadeh S, et al. Numerical Analysis of Turbocharger’s Bearing using Dynamic Mesh[J]. Journal of Applied Fluid Mechanics, 2016,9(5):2545-2557.
[18] 孙丹, 李胜远, 白伟钢, 等. 考虑轴颈涡动的滑动轴承动力特性数值研究[J]. 航空动力学报, 2018,33(1) :137-146.
SUN Dan,LI Shengyuan,BAI Weigang,et al. Numerical study on dynamic characteristic of journal bearing considering journal whirling motion[J].Journal of aerospace power. 2018,33(1) :137-146.
[19] Li Qiang,YU Guichang, LIU Shulian, et al. Application of Computational Fluid Dynamics and Fluid Structure Interaction Techniques for Calculating the 3D Transient Flow of Journal Bearings Coupled with Rotor Systems[J]. Chinese Journal of Mechanical Engineering, 2012,25(5):926-932.
[20] 孙丹, 王双, 王克明, 等. 椭圆轴承与圆轴承动力特性CFD数值分析[J]. 噪声与振动控制, 2015,35(4):1-5.
SUN Dan,WANG Shuang,WANG Keming,et al. CFD numerical analysis for dynamic characteristic of ellipitical bearings and cylindrical bearings[J].Noise and vibration control, 2015,35(4):1-5.
[21] 孙丹, 韦纯浩, 王双, 等. 三油楔滑动轴承动力特性数值研究[J]. 沈阳航空航天大学学报, 2017,34(6):9-15.
SUN Dan,WEI Chunhao,WANG Shuang, et al. Numerical study on dynamic characteristics of three-lobe journal bearing[J].Journal of Shenyang aerospace university,2017,34(6):9-15.
[22] Chauhan A, Sehgal R, Sharma R K. Investigations on the thermal effects in non-circular journal bearings[J]. Tribology International, 2011,44(12):1765-1773.
[23] Chauhan. Non-Circular Journal Bearings[M]. Springer International Publishing, 2016.
[24] Singhal A. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002,124(3):617-624.
[25] Gao G, Yin Z, Jiang D, et al. Analysis on design parameters of water-lubricated journal bearings under hydrodynamic lubrication[J]. Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology, 2016, 230(8):1019-1029.

PDF(1631 KB)

Accesses

Citation

Detail

段落导航
相关文章

/