[1] 张挺, 谭志新, 张恒,等. 基于分离系数矩阵差分法的输流管道轴向耦合响应特性研究[J]. 振动与冲击, 2018, 37(5): 148-154.
Zhang T, Tan Z X, Zhang H, et al. Axial coupled response characteristics of a fluid-conveying pipeline based on split-coefficient matrix finite difference method [J]. Journal of Vibration and Shock, 2018, 37(5):148-154.
[2] Paidoussis M P. Fluid-structure interactions: slender struc- tures and axial flow [M]. London: Academic Press, 1998.
[3] 金基铎, 宋志勇, 杨晓东. 两端固定输流管道的稳定性和参数共振[J]. 振动工程学报, 2004, 17(2):190-195.
Jin J D, Song Z Y, Yang X D. Stability and parametric resonances of a clamped–clamped pipe conveying fluid [J]. Journal of Vibration Engineering, 2004, 17(2): 190-195.
[4] 包日东, 金志浩, 闻邦椿. 端部约束悬臂输流管道的分岔与混沌响应[J]. 振动与冲击, 2008, 27(5):36-39.
Bao R D, Jin Z H, Wen B C. Bifurcation and chaotic response of restrained cantilever pipe with conveyed fluid [J]. Journal of vibration and shock, 2008, 27(5):36-39.
[5] 王琳. 输流管道的稳定性、分岔与混沌行为研究[D]. 武汉:华中科技大学, 2006.
Wang L. Stability, bifurcations and chaos in pipes conveying fluid [D]. Wuhan:Huazhong University of Science and Technology, 2006.
[6] Ni Q, Zhang Z L, Wang L. Application of the differential transformation method to vibration analysis of pipes conveying fluid [J]. Applied Mathematics & Computation, 2011, 217(16):7028-7038.
[7] Wang C C, Yau H T. Application of the differential transformation method to bifurcation and chaotic analysis of an AFM probe tip [J]. Computers & Mathematics with Applications, 2011, 61(8):1957-1962.
[8] 倪樵, 黄玉盈, 陈贻平. 微分求积法分析具有弹性支承输液管的临界流速[J]. 计算力学学报, 2001, 18(2):146-149.
Ni Q, Huang Y Y, Chen Y P. Differential guadrature method for analyzing critical flow velocity of the pipe conveying fluid with spring support [J]. Chinese Journal of Computational Mechanics, 2001, 18(2):146-149.
[9] 王琳, 倪樵. 用微分求积法分析输液管道的非线性动力学行为[J]. 动力学与控制学报, 2004, 2(4):56-61.
Wang L, Ni Q. The nonlinear dynamic vibrations of a restrained pipe conveying fluid by differential quadrature method [J]. Journal of Dynamics and Control, 2004, 2(4):56-61.
[10] Zhong W X. On precise integration method [J]. Journal of Computational and Applied Mathematics,2004,163(1):59-78.
[11] Long L, Xuan F Z. Flow-induced vibration analysis of supported pipes conveying pulsating fluid using precise integration method [J]. Mathematical Problems in Engineering, 2010, 12:1-15.
[12] An C, Su J. Dynamic response of clamped axially moving beams: Integral transform solution [J]. Applied Mathematics & Computation, 2011, 218(2):249-259.
[13] Gu J, An C, Duan M, et al. Integral transform solutions of dynamic response of a clamped–clamped pipe conveying fluid[J]. Nuclear Engineering & Design, 2013, 254(1):237– 245.
[14] Benito J J, Ureña F, Gavete L. Influence of several factors in the generalized finite difference method[J]. Applied Mathematical Modelling, 2001, 25(12):1039-1053.
[15] Gavete L, Ureña F, Benito J J, et al. Modelling of the advection–diffusion equation with a meshless method without numerical diffusion[J]. International Journal of Computer Mathematics, 2012, 89(3):377-389.
[16] Benito J J, Ureña F, Gavete L, et al. Application of the generalized finite difference method to improve the approximated solution of pdes [J]. Computer Modelling in Engineering & Sciences, 2009, 38: 39-58.
[17] Benito J J, Ureña F, Gavete L. Solving parabolic and hyperbolic equations by the generalized finite difference method [J]. Journal of Computational & Applied Mathematics, 2007, 209(2):208-233.
[18] Fan C M, Li P W. Generalized finite difference method for solving two-dimensional Burgers’ equations [J]. Procedia Engineering, 2014, 79: 55-60.
[19] Li P W, Fan C M. Generalized finite difference method for two-dimensional shallow water equations [J]. Engineering Analysis with Boundary Elements, 2017, 80:58–71.
[20] Zhang T, Ren Y F, Yang Z Q, et al. Application of generalized finite difference method to propagation of nonlinear water waves in numerical wave flume [J]. Ocean Engineering, 2016, 123:278-290.
[21] 张挺, 任聿飞, 杨志强,等. 基于广义有限差分法求解非线性自由液面的液体晃动问题[J]. 四川大学学报(工程科学版), 2016, 48(1):8-14.
Zhang T, Ren Y F, Yang Z Q, et al. Generalized finite difference method for non-linear free-surface problems of liquid sloshing [J]. Journal of Sichuan University(Engineering Science Edition), 2016, 48(1):8-14.
[22] Zhang T, Huang Y J, Liang L, et al. Numerical solutions of mild slope equation by generalized finite difference method [J]. Engineering Analysis with Boundary Elements, 2018, 88:1–13.
[23] Gu Y, Lei J, Fan C M, et al. The generalized finite difference method for an inverse time-dependent source problem associated with three-dimensional heat equation [J]. Engineering Analysis with Boundary Elements, 2018, 91: 73-81.
[24] 邱吉宝, 向树红, 张正平. 计算结构动力学[M]. 合肥: 中国科学技术大学出版社, 2009.
Qiu J B, Xiang S H, Zhang Z P. Computational structural dynamics [M]. Hefei:University of science and technology of China press, 2009.
[25] Thomson W T. Theory of vibration with applications [M], New Jersey: Prentice-Hall, 1981.