基于广义有限差分法的输流直管振动响应特性研究

张挺1,林震寰1,郭晓梅1,张恒1,范佳铭2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (24) : 165-171.

PDF(1580 KB)
PDF(1580 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (24) : 165-171.
论文

基于广义有限差分法的输流直管振动响应特性研究

  • 张挺1,林震寰1,郭晓梅1,张恒1,范佳铭2
作者信息 +

Numerical simulation of vibration response of pipe conveying fluid based on a generalized finite difference method

  • ZHANG Ting1,LIN Zhenhuan1,GUO Xiaomei1,ZHANG Heng1,FAN Jiaming2
Author information +
文章历史 +

摘要

基于输流直管横向振动微分方程,采用广义有限差分法和Houbolt法分别对空间和时间上的偏微分项进行离散,建立高阶精度的无网格法数值模式。将该数值模式应用于两端支撑轴向运动梁模型和两端固支输流直管模型,所得的固有频率和振幅时程等与前人研究成果和理论解均吻合良好;并对不同总点数N、时间步长△t、子区域选点数ns的数值结果进行对比,表明提出的数值模型在求解输流直管振动响应问题上具有良好的准确性和鲁棒性;对比分析了三种不同支撑条件(两端固支、两端简支和一端固支一端简支)下输流直管的振动响应特性。结果表明:两端简支时输流直管中点处的振幅最大,振动频率最小;两端固支时输流直管中点处的振幅最小,振动频率最大;且在端部约束限制条件不对称时,其振动幅值最大值出现位置会向弱约束端偏移。

Abstract

In this study, a high-order accuracy numerical model of the meshless method, called generalized finite difference method (GFDM), was generalized to analyze the transverse vibration problem of pipe conveying fluid.Based on the differential equation of transverse vibration, the GFDM and the Houbolt methods were adopted to discretize the partial differential items in space and time, respectively.The consistent with good results of natural frequency and the amplitude time range was compared with the theoretical solution and other numerical results reported in literature.Meanwhile, the numerical model proposed in this paper has good stability and robustness in solving the vibration response of pipe conveying fluid by comparing with the vibration amplitude at the midpoint with different total number of points N, time step Δt and sub-region selection points ns, respectively.Furthermore, detailed analysis of the vibration response characteristics with several typical boundary conditions indicates that the vibration amplitude at the midpoint of the pined-pined pipe is much large than that of two other boundary conditions, and the vibration frequency of the clamped-clamped pipe is more fast than that of others.Besides, the position of the maximum amplitude of the vibration is shifted to the weak constraint when the end of restrictive condition is asymmetric.

关键词

输流直管 / 无网格法 / 广义有限差分法(GFDM) / Houbolt法 / 横向振动

Key words

words: pipe conveying fluid / meshless method / generalized finite difference method(GFDM) / Houbolt method / transverse vibration

引用本文

导出引用
张挺1,林震寰1,郭晓梅1,张恒1,范佳铭2. 基于广义有限差分法的输流直管振动响应特性研究[J]. 振动与冲击, 2019, 38(24): 165-171
ZHANG Ting1,LIN Zhenhuan1,GUO Xiaomei1,ZHANG Heng1,FAN Jiaming2. Numerical simulation of vibration response of pipe conveying fluid based on a generalized finite difference method[J]. Journal of Vibration and Shock, 2019, 38(24): 165-171

参考文献

[1] 张挺, 谭志新, 张恒,等. 基于分离系数矩阵差分法的输流管道轴向耦合响应特性研究[J]. 振动与冲击, 2018, 37(5): 148-154.
Zhang T, Tan Z X, Zhang H, et al. Axial coupled response characteristics of a fluid-conveying pipeline based on split-coefficient matrix finite difference method [J]. Journal of Vibration and Shock, 2018, 37(5):148-154.
[2] Paidoussis M P. Fluid-structure interactions: slender struc- tures and axial flow [M]. London: Academic Press, 1998.
[3] 金基铎, 宋志勇, 杨晓东. 两端固定输流管道的稳定性和参数共振[J]. 振动工程学报, 2004, 17(2):190-195.
Jin J D, Song Z Y, Yang X D. Stability and parametric resonances of a clamped–clamped pipe conveying fluid [J]. Journal of Vibration Engineering, 2004, 17(2): 190-195.
[4] 包日东, 金志浩, 闻邦椿. 端部约束悬臂输流管道的分岔与混沌响应[J]. 振动与冲击, 2008, 27(5):36-39.
Bao R D, Jin Z H, Wen B C. Bifurcation and chaotic response of restrained cantilever pipe with conveyed fluid [J]. Journal of vibration and shock, 2008, 27(5):36-39.
[5] 王琳. 输流管道的稳定性、分岔与混沌行为研究[D]. 武汉:华中科技大学, 2006.
Wang L. Stability, bifurcations and chaos in pipes conveying fluid [D]. Wuhan:Huazhong University of Science and Technology, 2006.
[6] Ni Q, Zhang Z L, Wang L. Application of the differential transformation method to vibration analysis of pipes conveying fluid [J]. Applied Mathematics & Computation, 2011, 217(16):7028-7038.
[7] Wang C C, Yau H T. Application of the differential transformation method to bifurcation and chaotic analysis of an AFM probe tip [J]. Computers & Mathematics with Applications, 2011, 61(8):1957-1962.
[8] 倪樵, 黄玉盈, 陈贻平. 微分求积法分析具有弹性支承输液管的临界流速[J]. 计算力学学报, 2001, 18(2):146-149.
Ni Q, Huang Y Y, Chen Y P. Differential guadrature method for analyzing critical flow velocity of the pipe conveying fluid with spring support [J]. Chinese Journal of Computational Mechanics, 2001, 18(2):146-149.
[9] 王琳, 倪樵. 用微分求积法分析输液管道的非线性动力学行为[J]. 动力学与控制学报, 2004, 2(4):56-61.
Wang L, Ni Q. The nonlinear dynamic vibrations of a restrained pipe conveying fluid by differential quadrature method [J]. Journal of Dynamics and Control, 2004, 2(4):56-61.
[10] Zhong W X. On precise integration method [J]. Journal of Computational and Applied Mathematics,2004,163(1):59-78.
[11] Long L, Xuan F Z. Flow-induced vibration analysis of supported pipes conveying pulsating fluid using precise integration method [J]. Mathematical Problems in Engineering, 2010, 12:1-15.
[12] An C, Su J. Dynamic response of clamped axially moving beams: Integral transform solution [J]. Applied Mathematics & Computation, 2011, 218(2):249-259.
[13] Gu J, An C, Duan M, et al. Integral transform solutions of dynamic response of a clamped–clamped pipe conveying fluid[J]. Nuclear Engineering & Design, 2013, 254(1):237– 245.
[14] Benito J J, Ureña F, Gavete L. Influence of several factors in the generalized finite difference method[J]. Applied Mathematical Modelling, 2001, 25(12):1039-1053.
[15] Gavete L, Ureña F, Benito J J, et al. Modelling of the advection–diffusion equation with a meshless method without numerical diffusion[J]. International Journal of Computer Mathematics, 2012, 89(3):377-389.
[16] Benito J J, Ureña F, Gavete L, et al. Application of the generalized finite difference method to improve the approximated solution of pdes [J]. Computer Modelling in Engineering & Sciences, 2009, 38: 39-58.
[17] Benito J J, Ureña F, Gavete L. Solving parabolic and hyperbolic equations by the generalized finite difference method [J]. Journal of Computational & Applied Mathematics, 2007, 209(2):208-233.
[18] Fan C M, Li P W. Generalized finite difference method for solving two-dimensional Burgers’ equations [J]. Procedia Engineering, 2014, 79: 55-60.
[19] Li P W, Fan C M. Generalized finite difference method for two-dimensional shallow water equations [J]. Engineering Analysis with Boundary Elements, 2017, 80:58–71.
[20] Zhang T, Ren Y F, Yang Z Q, et al. Application of generalized finite difference method to propagation of nonlinear water waves in numerical wave flume [J]. Ocean Engineering, 2016, 123:278-290.
[21] 张挺, 任聿飞, 杨志强,等. 基于广义有限差分法求解非线性自由液面的液体晃动问题[J]. 四川大学学报(工程科学版), 2016, 48(1):8-14.
Zhang T, Ren Y F, Yang Z Q, et al. Generalized finite difference method for non-linear free-surface problems of liquid sloshing [J]. Journal of Sichuan University(Engineering Science Edition), 2016, 48(1):8-14.
[22] Zhang T, Huang Y J, Liang L, et al. Numerical solutions of mild slope equation by generalized finite difference method [J]. Engineering Analysis with Boundary Elements, 2018, 88:1–13.
[23] Gu Y, Lei J, Fan C M, et al. The generalized finite difference method for an inverse time-dependent source problem associated with three-dimensional heat equation [J]. Engineering Analysis with Boundary Elements, 2018, 91: 73-81.
[24] 邱吉宝, 向树红, 张正平. 计算结构动力学[M]. 合肥: 中国科学技术大学出版社, 2009.
Qiu J B, Xiang S H, Zhang Z P. Computational structural dynamics [M]. Hefei:University of science and technology of China press, 2009.
[25] Thomson W T. Theory of vibration with applications [M], New Jersey: Prentice-Hall, 1981.
 
 

PDF(1580 KB)

Accesses

Citation

Detail

段落导航
相关文章

/