基于自相关分析与MCKD的滚动轴承早期故障诊断

祝小彦,王永杰

振动与冲击 ›› 2019, Vol. 38 ›› Issue (24) : 183-188.

PDF(1532 KB)
PDF(1532 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (24) : 183-188.
论文

基于自相关分析与MCKD的滚动轴承早期故障诊断

  • 祝小彦,王永杰
作者信息 +

A method of incipient fault diagnosis of bearings based on autocorrelation analysis and MCKD

  • ZHU Xiaoyan,WANG Yongjie
Author information +
文章历史 +

摘要

滚动轴承早期故障信号通常呈现出非平稳性、弱调制性、故障特征成分不突出以及背景噪声强烈等特点,有效提取轴承故障特征比较困难,因此难以准确判断轴承的故障位置。针对这一问题,提出了基于自相关分析与最大相关峭度解卷积(MCKD)算法的滚动轴承故障诊断方法:①利用有偏估计自相关分析方法对轴承信号作初步分析,抑制信号中噪声成分;利用MCKD算法对所得信号作进一步分析,突出信号中的原始冲击成分并进一步去噪,使得信号的信噪比进一步提高;③对信号进行包络谱分析,通过包络谱中的主导频率成分与滚动轴承各元件的故障特征频率对比从而判断轴承的故障位置。仿真数据和实测数据分析结果证明,所提方法能够有效提取故障信号中的特征信息,具有一定的有效性。

Abstract

Rolling bearing early faults often present a non-stationary signal, weak regulation.The fault feature component is not outstanding and there is strong background noise, which makes effective extraction of bearing fault features very difficult.To solve this problem, a fault diagnosis method of rolling bearings based on autocorrelation analysis and MCKD was proposed in this paper.First of all, the use of the biased estimate autocorrelation analysis method of the bearing signal makes a preliminary analysis, realizes the inhibition effect of noise in the signal component, then MCKD solution of the convolution algorithm of the signals was used for further analysis, highlighting the original impact signal components and further de-noising.The signal-to-noise ratio was further improved.Finally, signal envelope spectrum analysis was used to determine the bearing fault location.The simulations and the analysis results of the measured data show that the proposed method can effectively extract the characteristic information of the fault signal and has certain validity.

关键词

最大相关峭度解卷积(MCKD) / 自相关分析 / 滚动轴承 / 早期故障诊断 / 特征提取

Key words

maximum correlated kurtosis deconvolution(MCKD) / autocorrelation analysis / rolling bearing / incipient fault diagnosis / feature extraction

引用本文

导出引用
祝小彦,王永杰. 基于自相关分析与MCKD的滚动轴承早期故障诊断[J]. 振动与冲击, 2019, 38(24): 183-188
ZHU Xiaoyan,WANG Yongjie. A method of incipient fault diagnosis of bearings based on autocorrelation analysis and MCKD[J]. Journal of Vibration and Shock, 2019, 38(24): 183-188

参考文献

[1] 胥永刚,孟志鹏,陆明. 基于双树复小波包变换的滚动轴承故障诊断[J].农业工程学报,2013,29(10):49-56.
Xu Yong-Gang, Meng Zhi-Peng, Lu Ming. Fault diagnosis of rolling bearing based on dual-tree complex wavelet packet transform [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(10): 49-56.
[2] 李昌林,孔凡让,黄伟国,等. 基于EEMD和Laplace小波的滚动轴承故障诊断[J].振动与冲击,2014,33(3):63-69,88.
Li Chang-Lin, Kong Fan-Rang, Huang Wei-Guo, et al. Rolling bearing fault diagnosis based on EEMD and Laplace wavelet[J] .Journal of vibration and shock,2014,33(3):63-69,88.
[3] 周智,朱永生,张优云,等. 基于EEMD和共振解调的滚动轴承故障诊断[J]. 振动与冲击,2013,32(2):76-80.
Zhou Zhi, Zhu Yong-Sheng, Zhang You-Yun, et al. Adaptive fault diagnosis of rolling bearings based on EEMD and demodulated resonance[J]. Journal of vibration and shock, 2013,32(2):76-80.
[4] 随文涛,张丹,Wilson Wang.基于EMD和MKD的滚动轴承故障诊断方法[J].振动与冲击,2015,34(9):55-64.
Sui Wen-Tao, Zhang Dan, Wilson Wang. Fault diagnosis of rolling element bearings based on EMD and MKD, 2015,34(9):55-64.
[5] 陈恩利,张玺,申永军,等.基于SVD降噪和盲信号分离的滚动轴承故障诊断[J].振动与冲击,2012,31(23):185-131,190.
Chen En-Li, Zhang Xi, Shen Yong-Jun, et al. Fault diagnosis of rolling bearings based on SVD denoising and blind signals separation[J]. Journal of vibration and shock, 2012,31(23):185-131,190.
[6] 孟宗,李珊珊.基于小波改进阈值去噪和HHT的滚动轴承故障诊断[J].振动与冲击,2013,32(14):204-208,214.
Meng Zong,Li Shan-Shan. Rolling bearing fault diagnosis based on improved wavelet threshold de-noising method and HHT[J]. Journal of Sound and Vibration, 2013,32(14):204-208,214.
[7] 孙伟,熊邦书,黄建萍,等.小波包降噪与LMD相结合的滚动轴承故障诊断方法[J].振动与冲击,2012,31(18):153-156.
Sun Wei, Xiong Bang-Shu, Huang Jian-Ping, et al. Fault diagnosis of a rolling bearing using Wavelet packet de-noising and LMD[J]. Journal of Sound and Vibration, 2012,31(18):153-156.
[8] 刘尚坤,唐贵基,何玉灵. Teager能量算子结合MCKD的滚动轴承早期故障识别[J].振动与冲击,2016,35(15):98-102.
Liu Shang-Kun,Tang Gui-Ji,He Yu-Ling. Incipient fault diagnosis of rolling bearings based on Teager energy operator and MCKD[J]. Journal of vibration and shock, 2016,35(15):98-102.
[9] 王建国,陈帅,张超. VMD与MCKD在轴承故障诊断中的应用与研究[J].组合机床与自动化加工技术,2017(5):69-72,76.
Wang Jian-Guo, Chen Shuai, Zhang Chao. Application and Research of VMD and MCKD in Bearing Fault Diagnosis[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2017(5):69-72,76.
[10] Mcdonald G L, Zhao Q, Zuo M J.Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J].Mechanical Systems and Signal Processing,2012,33:237-255.
[11] 张俊甲,马增强,王梦奇,等. 基于VMD与自相关分析的滚动轴承故障特征提取[J]. 电子测量与仪器学报,2017,31(9):1372-1378.
Zhang Jun-Jia, Ma Zeng-Qiang, Wang Meng-Qi, et al. Rolling bearing fault feature extraction based on VMD and autocorrelation analysis [J].Journal of Electronic measurement and instrumentation,2017,31(9):1372-1378.
[12] Antoni J, Bnnardot F, Raad A, et al. Cyclostationary modeling of rotating machine vibration signals [J]. Mechanical Systems and Signal Processing, 2004, 18(6): 1285 - 1314.
[13] 唐贵基, 王晓龙. 自适应最大相关峭度解卷积方法及其在轴承早期故障诊断中的应用[J].中国电机工程学报, 2015, 35(6): 1436-1444.
Tang Gui-Ji, Wang Xiao-Long. Adaptive Maximum Correlated Kurtosis Deconvolution Method and Its Application on Incipient Fault Diagnosis of Bearing [J]. Proceedings of The Chinese Society for Electrical Engineering, 2015, 35(6): 1436-1444.
[14] Randall R B, Antoni J, Chobsaard S. The relationship between spectral correlation and envelope analysis in the diagnosis of bearing faults and other cyclostationary machine signals [J]. Mechanical Systems and Signal Processing, 2001, 15(5): 945-962
[15] 马伦,康建设,孟妍,等.基于 Morlet 小波变换的滚动轴承早期故障特征提取研究[J].仪器仪表学报,2013,34(4): 920-926.
Ma Lun, Kang Jian-She, Meng Yan, et al. Research on feature extraction of rolling bearing incipient fault based on morlet wavelet transform [J]. Chinese Journal of Scientific Instrument,2013,34(4): 920-926.
[16] Qiu H, Lee J, Lin J, et al .Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration,2006,289(4-5):1066-1090.

PDF(1532 KB)

Accesses

Citation

Detail

段落导航
相关文章

/