梁桥多级设防SMA减震装置

曹飒飒1,伍隋文2,孙卓1,王欢1,杨俊1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (24) : 209-217.

PDF(3077 KB)
PDF(3077 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (24) : 209-217.
论文

梁桥多级设防SMA减震装置

  • 曹飒飒1,伍隋文2,孙卓1,王欢1,杨俊1
作者信息 +

A multi-level performance SMA-based isolation system in girder bridges

  • CAO Sasa1,WU Suiwen2,SUN Zhuo1,WANG Huan1,YANG Jun1
Author information +
文章历史 +

摘要

近场地震动输入下,减隔震桥梁会发生比较大的位移和残余变形,导致落梁等严重震害。拟提出一种新型多级设防SMA减震装置,由三级SMA索与铅芯橡胶支座并联组成;随地震强度增大,各级SMA索依次张紧,满足不同性能需求;基于OpenSees和Sap2000软件,探索多级设防SMA减震装置恢复力模型和滞回模型,对比分析两种软件对多级设防SMA减震装置的模拟效果。以某一连续梁桥为例,以SMA索截面积进行参数分析,研究其多级减震效果。结果表明,该装置具有较好的自复位、限位和耗能能力,兼具多级设防的优点。

Abstract

During the near-fault earthquake action, isolated bridges experience significant in-plane displacement and residual displacements, which may cause the bridge girders to unseating and even complete collapse.In this paper, a multi-level performance SMA-based isolation system was proposed.This device consists of 3-levels of SMA cables and conventional isolators, which are assembled in parallel.With the intensity of earthquake increasing, each level of SMA cables will be activated in a sequence to meet different performance requirements.Based on OpenSees and Sap2000 platforms, the lateral restoring force-displacement relationship and the hysteresis model of a specific SMA-based isolator was explored.The effectiveness of the two platforms for simulating the isolator was also investigated.Furthermore, a case study of a continuous bridge was conducted and parameter analysis about effective sectional area was conducted to testify the effectiveness of the isolation system in multi-level aseismic design.It turns out that this device has better displacement reduction, restoration, and energy dissipation capability.In addition, it has the advantages of multi-level performances, which ensures itself a bright prospect in application.

关键词

桥梁抗震 / 形状记忆合金 / 多级设防 / OpenSees / 多级减震控制

Key words

seismic design of bridges / shape memory alloy / multi-level performance seismic design / OpenSees / multi-stage seismic control method

引用本文

导出引用
曹飒飒1,伍隋文2,孙卓1,王欢1,杨俊1. 梁桥多级设防SMA减震装置[J]. 振动与冲击, 2019, 38(24): 209-217
CAO Sasa1,WU Suiwen2,SUN Zhuo1,WANG Huan1,YANG Jun1. A multi-level performance SMA-based isolation system in girder bridges[J]. Journal of Vibration and Shock, 2019, 38(24): 209-217

参考文献

[1] Jangid R S, Kelly J M. Base isolation for near-fault motions[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(5): 691-707.
[2] Deb S K, Deb S K. Seismic base isolation - An overview[J]. Current Science, 2004, 87(10): 1426-1430.
[3] Li J, Peng T, Yan X. Damage investigation of girder bridges under the Wenchuan earthquake and corresponding seismic design recommendations[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(4): 337-344.
[4] Raheem S E A. Pounding mitigation and unseating prevention at expansion joints of isolated multi-span bridges[J]. Engineering Structures, 2009, 31(10): 2345-2356.
[5] Roussis P C, Constantinou M C, Erdik M, et al. Assessment of Performance of Seismic Isolation System of Bolu Viaduct[J]. Journal of Bridge Engineering, 2003, 8(4): 182-190.
[6] Karalar M, Padgett J E, Dicleli M. Parametric analysis of optimum isolator properties for bridges susceptible to near-fault ground motions[J]. Engineering Structures, 2012, 40(7): 276-287.
[7] Shen J, Tsai M H, Chang K C, et al. Performance of a Seismically Isolated Bridge under Near-Fault Earthquake Ground Motions[J]. Journal of Structural Engineering, 2004, 130(6): 861-868.
[8] Housner G W, Thiel, Charles C. The Continuing Challenge: Report on the Performance of State Bridges in the Northridge Earthquake[J]. Earthquake Spectra, 1995, 11(4): 607-636.
[9] Bruneau M, Wilson J C, Tremblay R. Performance of steel bridges during the 1995 Hyogo-ken Nanbu (Kobe, Ja[J]. Canadian Journal of Civil Engineering, 1996, 23(3): 678-713.
[10] 921大地震勘灾调查小组. 921集集大地震桥梁震害调查报告[R]. 台湾: 国家地震工程研究中心, 1999.
[11] Casciati F, Faravelli L, Saleh R A. An SMA passive device proposed within the highway bridge benchmark[J]. Structural Control & Health Monitoring, 2009, 16(6): 657–667.
[12] Dezfuli F H, Alam M S. Shape memory alloy wire-based smart natural rubber bearing[J]. Smart Materials and Structures, 2013, 22(4): 1-17.
[13] Ozbulut O E, Hurlebaus S. Optimal design of superelastic-friction base isolators for seismic protection of highway bridges against near-field earthquakes[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(3): 273–291.
[14] Shinozuka M, Chaudhuri S R, Mishra S K. Shape-Memory-Alloy supplemented Lead Rubber Bearing (SMA-LRB) for seismic isolation[J]. Probabilistic Engineering Mechanics, 2015, 41(1): 34-45.
[15] 杨洁. SMA绞线复合支座的设计及其桥梁隔震效果分析[D]. 辽宁: 辽宁工程技术大学, 2012.
Yang Jie. Development of SMA Isolation Bearing and Its Analysis of Damping Effect in Bridge[D]. Liaoning: Liaoning Technical University, 2012.
[16] Dolce M, Cardone D. Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension[J]. International Journal of Mechanical Sciences, 2001, 43(11): 2657-2677.
[17] Choi E, Nam T H, Oh J T, et al. An isolation bearing for highway bridges using shape memory alloys[J]. Materials Science & Engineering A, 2006, 438(1): 1081-1084.
[18] Bhuiyan A R, Alam M S. Seismic performance assessment of highway bridges equipped with superelastic shape memory alloy-based laminated rubber isolation bearing[J]. Engineering Structures, 2013, 49(2): 396-407.
[19] 徐略勤, 李建中. 新型滑移挡块的设计、试验及防震效果研究[J]. 工程力学, 2016, 2(1): 111-118.
Xu Lueqin, Li Jianzhong. Design and Experimental Investigation of a New Type Sliding Retainer and Its Efficacy in Seismic Fortification. Engineering Mechanics[J], 2016, 33(2):111-118.
[20] 许文俊. 基于多级限位耗能装置的新型结构体系抗震性能分析[D]. 大连: 大连理工大学, 2011.
Xu Wenjun. Seismic Behavior Analysis of a New Structure System based on Multilevel Displacement Restricting and Energy Dissipation Device[D]. Dalian: Dalian University of Technology, 2011.
[21] 彭天波, 于训涛, 王立志, et al. 多道防线抗震球型钢支座的开发和试验[J]. 同济大学学报: 自然科学版, 2012, 40(7): 992-995.
Peng Tianbo, Yu Xuntao, Wang Lizhi et al. Development and Test of a Multi-defense Aseismic Spherical Bearing. Journal of Tongji University(Natural Science)[J], 2012, 40(7): 992-995.
[22] 袁万城, 曹新建, 荣肇骏. 拉索减震支座的开发与试验研究[J]. 哈尔滨工程大学学报, 2010, 31(12): 1593-1600.
Yuan Wancheng, Cao Xinjian, Rong Zhaojun. Development and Experimental Study on Cable-sliding Friction Aseismic Bearing. Journal of Harbin Engineering University[J], 2010, 31(12):1593-1600.
[23] Dezfuli F H, Li S, Alam M S, et al. Effect of constitutive models on the seismic response of an SMA-LRB isolated highway bridge[J], 2017, 148: 113-125.
[24] Reedlunn B, Daly S, Shaw J. Superelastic shape memory alloy cables: Part I – Isothermal tension experiments[J]. International Journal of Solids & Structures, 2013, 50(20-21): 3009-3026.
[25] Ozbulut O E, Daghash S, Sherif M M. Shape memory alloy cables for structural applications[J]. Journal of Materials in Civil Engineering, 2016, 28(4): 1-10.
[26] Carboni B, Lacarbonara W, Auricchio F. Hysteresis of Multiconfiguration Assemblies of Nitinol and Steel Strands: Experiments and Phenomenological Identification[J]. Journal of Engineering Mechanics, 2014, 141(3): 1-17.
[27] Hedayati Dezfuli F, Shahria Alam M. Seismic vulnerability assessment of a steel-girder highway bridge equipped with different SMA wire-based smart elastomeric isolators[J]. Smart Materials & Structures, 2016, 25(7): 1-16.
 

PDF(3077 KB)

Accesses

Citation

Detail

段落导航
相关文章

/