为了从电流信号中准确地提取行星齿轮箱故障特征,提出了基于改进自适应噪声完备集合经验模式分解和频率解调分析的故障诊断方法。通过改进自适应噪声完备集合经验模式分解将感应电机电流信号自适应地分解为一系列本质模式函数;根据故障频率调制供电频率的特性,以瞬时频率最接近供电频率为优选原则,优选出含有故障信息的本质模式函数作为敏感分量;并对敏感分量进行频率解调,通过频率解调谱诊断行星齿轮箱故障。齿轮箱试验分别采集太阳轮、行星轮以及齿圈三种局部故障状态的电机电流信号;信号分析结果表明该方法不仅可以减小定子电流噪声的影响,而且可以有效地提取复杂信号中的故障特征频率。
Abstract
In order to accurately extract gear fault feature of planetary gearboxes from current signals, a fault diagnosis method was proposed based on improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and frequency demodulation analysis.Firstly, the complex multi-component induction motor current signal was adaptively decomposed into a series of intrinsic mode functions (IMF) by ICEEMDAN.Then, based on the characteristics of fault frequency modulating supply frequency and the principle of the instantaneous frequency fluctuation around supply frequency, the IMF containing fault information was preferably selected as the sensitive component.Finally, the planetary gearbox fault was diagnosed according to the frequency demodulated spectrum of the sensitive components.The gearbox experiment collected the induction motor current signal with sun, planet and ring partial fault, respectively.The analysis result shows that this method can not only reduce the influence of the noise in stator current, but can also extract the fault frequency feature in complex signals effectively.
关键词
行星齿轮箱 /
故障诊断 /
频率解调 /
电机电流特征分析(MCSA)
{{custom_keyword}} /
Key words
planetary gearbox /
fault diagnosis /
frequency demodulation /
motor current signature analysis(MCSA)
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 饶振纲. 行星齿轮箱设计[M]. 北京:化学工业出版社,2007.
RAO Zhen-gang. Design of planetary gearbox[M]. Beijing: Chemical Industry Press, 2007.
[2] 冯志鹏,褚福磊,左明键. 行星齿轮箱振动故障诊断方法[M]. 北京:科学出版社,2015.
FENG Zhi-peng, CHU Fu-lei, ZUO Ming-jian. Method for vibration fault diagnosis of planetary gearboxes[M]. Beijing: Science Press, 2015.
[3] Kia S H, Henao H, Capolino G A. A comparative study of acoustic, vibration and stator current signatures for gear tooth fault diagnosis[C]//Electrical Machines (ICEM), 2012 XXth International Conference on. IEEE, 2012: 1514-1519.
[4] Bellini A, Filippetti F, Tassoni C, et al. Advances in diagnostic techniques for induction machines[J]. IEEE Transactions on industrial electronics, 2008, 55(12): 4109-4126.
[5] Rajagopalan S, Habetler T G, Harley R G, et al. Current/voltage-based detection of faults in gears coupled to electric motors[J]. IEEE Transactions on industry applications, 2006, 42(6): 1412-1420.
[6] 陈峙,王铁,谷丰收,等. 基于电机电流信号双频谱分析的齿轮传动故障诊断[J]. 机械工程学报,2012,48(21):84-90.
CHEN Zhi, WANG Tie, GU Feng-shou, et al. Gear transmission fault diagnosis based on the bispectrum analysis of induction motor current signatures[J]. Journal Mechanical Engineering, 2012, 48(21): 84-90.
[7] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. The Royal Society, 1998, 454(1971): 903-995.
[8] Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in adaptive data analysis, 2009, 1(01): 1-41.
[9] Colominas M A, Schlotthauer G, Torres M E. Improved complete ensemble EMD: A suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control, 2014, 14: 19-29..
[10] Blodt M, Chabert M, Regnier J, et al. Mechanical load fault detection in induction motors by stator current time-frequency analysis[J]. IEEE Transactions on Industry Applications, 2006, 42(6): 1454-1463.
[11] Kia S H, Henao H, Capolino G A. Analytical and experimental study of gearbox mechanical effect on the induction machine stator current signature[J]. IEEE Transactions on Industry Applications, 2009, 45(4): 1405-1415.
[12] Lu D, Qiao W, Gong X. Current-based gear fault detection for wind turbine gearboxes[J]. IEEE Transactions on Sustainable Energy, 2017, 8(4): 1453-1462.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}