含分层复合材料层合板的接触阻尼特性

何意1,肖毅1,苏众庆2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (24) : 8-17.

PDF(3138 KB)
PDF(3138 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (24) : 8-17.
论文

含分层复合材料层合板的接触阻尼特性

  • 何意1,肖毅1,苏众庆2
作者信息 +

Contact damping characteristics of delaminated composite plates

  • HE Yi1,XIAO Yi1,SU Zhongqing2
Author information +
文章历史 +

摘要

阻尼响应是用于识别分层损伤的高敏感动态参数。分层板的阻尼包括材料阻尼和接触阻尼两部分:基于应变能法,计算了复合材料材料阻尼;基于静-动摩擦一体化能量损耗模型,计算了一阶模态下分层界面接触阻尼;采用有限元软件Abaqus建立了分层板有限元模型(FEMs),借助罚刚度法引入界面法向接触刚度,同时运用等效黏性阻尼引入接触阻尼参数,分析了分层层合板动态响应;采用自由衰减试验测量了不同分层尺寸和厚度方向位置板件的动态参数。结果表明,分层比例越大,层合板的一阶模态阻尼上升越多,其中接触阻尼起主要作用。试验结果与有限元结果吻合较好,验证了有限元模型的合理性和准确性。

Abstract

Damping performance is a high-sensitivity dynamic parameter that can be utilized to identify delamination.The damping of the delaminated composite plates contains material damping and contact damping, material damping was calculated based on the strain energy method, and contact damping was analyzed by a static-slip-integrated friction energy-dissipated model.The finite element models (FEMs) were developed by using the Abaqus software to simulate the dynamic responses of delaminated composite plates, in which, the normal contact stiffness and contact damping were introduced via the penalty stiffness method and equivalent viscous damping, respectively.The free decay test was set up to measure the dynamic parameters of the plates with different delamination sizes and locations in thickness direction.The results show that the higher the delamination ratio is, the more the first-order modal damping of the laminate rises, and the contact damping plays a major role in the rising.The experimental results are in good agreement with the FEMs' results, which verifies the rationality and accuracy of the FEMs.

关键词

复合材料层合板 / 分层损伤 / 有限元分析 / 接触阻尼 / 罚刚度法

Key words

laminated composites / delamination / finite element analysis / contact damping / penalty stiffness method

引用本文

导出引用
何意1,肖毅1,苏众庆2. 含分层复合材料层合板的接触阻尼特性[J]. 振动与冲击, 2019, 38(24): 8-17
HE Yi1,XIAO Yi1,SU Zhongqing2. Contact damping characteristics of delaminated composite plates[J]. Journal of Vibration and Shock, 2019, 38(24): 8-17

参考文献

[1]       Zou Y, Tong L, Steven G P. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—a review[J]. Journal of Sound and vibration, 2000, 230(2): 357-378.

[2]       Pardoen G C. Effect of delamination on the natural frequencies of composite laminates[J]. Journal of composite materials, 1989, 23(12): 1200-1215.

[3]       Saravanos D A, Hopkins D A. Effects of delaminations on the damped dynamic characteristics of composite laminates: analysis and experiments[J]. Journal of Sound and Vibration, 1996, 192(5): 977-993.

[4]       Luo H, Hanagud S. Delamination detection using dynamic characteristics of composite plates[C]//36th Structures, Structural Dynamics and Materials Conference. 1995: 1172.

[5]       Żak A, Krawczuk M, Ostachowicz W. Numerical and experimental investigation of free vibration of multilayer delaminated composite beams and plates[J]. Computational Mechanics, 2000, 26(3): 309-315.

[6]       Ju F, Lee H P, Lee K H. Finite element analysis of free vibration of delaminated composite plates[J]. Composites engineering, 1995, 5(2): 195-209.

[7]       Shen M H H, Grady J E. Free vibrations of delaminated beams[J]. Aiaa Journal, 1992, 30(5):1361-1370.

[8]       Luo H, Hanagud S. Dynamics of delaminated beams[J]. International Journal of Solids & Structures, 2000, 37(10):1501-1519.

[9]       Yim J H, Jang B Z. Damping in partially delaminated composites[J]. Ksme International Journal, 1997, 11(5):537-546.

[10]    Wang J H, Chen W K. Investigation of the vibration of a blade with friction damper by HBM[C]//ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1992: V005T14A003-V005T14A003.

[11]    Cameron T M, Griffin J H. An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems[J]. Journal of applied mechanics, 1989, 56(1): 149-154.

[12]    Bazan E, Bielak J, Griffin J H. An efficient method for predicting the vibratory response of linear structures with friction interfaces[J]. Journal of engineering for gas turbines and power, 1986, 108(4): 633-640.

[13]    Menq C H, Griffin J H, Bielak J. The influence of a variable normal load on the forced vibration of a frictionally damped structure[J]. Journal of Engineering for Gas Turbines and Power, 1986, 108(2): 300-305.

[14]    Polycarpou A A, Soom A. Application of a two-dimensional model of continuous sliding friction to stick-slip[J]. Wear, 1995, 181: 32-41.

[15]    Olsson H, Åström K J, De Wit C C, et al. Friction models and friction compensation[J]. Eur. J. Control, 1998, 4(3): 176-195.

[16]    Andersson S, Söderberg A, Björklund S. Friction models for sliding dry, boundary and mixed lubricated contacts[J]. Tribology international, 2007, 40(4): 580-587.

[17]    Al-Bender F, Lampaert V, Swevers J. The generalized Maxwell-slip model: a novel model for friction simulation and compensation[J]. IEEE Transactions on automatic control, 2005, 50(11): 1883-1887.

[18]    Ju F, Lee H P, Lee K H. Dynamic response of delaminated composite beams with intermittent contact in delaminated segments[J]. Composites Engineering, 1994, 4(12): 1211-1224.

[19]    Żak A, Krawczuk M, Ostachowicz W. Vibration of a laminated composite plate with closing delamination[J]. Journal of Intelligent Material Systems and Structures, 2001, 12(8): 545-551.

[20]    Singh A K, Chen B Y, Tan V B C, et al. Finite element modeling of nonlinear acoustics/ultrasonics for the detection of closed delaminations in composites[J]. Ultrasonics, 2017, 74: 89-98.

[21]    Lin D X, Ni R G, Adams R D. Prediction and measurement of the vibrational damping parameters of carbon and glass fibre-reinforced plastics plates[J]. Journal of composite materials, 1984, 18(2): 132-152.

[22]    罗忠,朱锡,梅志远,等. 夹芯复合材料结构阻尼特性研究[J]. 振动与冲击,2008, 27(11)134-136+146+204.

Luo Z, Zhu X, Mei Z Y, et al. Research on damping of sandwich composite structures[J]. Journal of Vibration and Shock, 2008, 27(11): 134-136+146+204.

[23]    He Y, Xiao Y, Liu Y, et al. An efficient finite element method for computing modal damping of laminated composites: Theory and experiment[J]. Composite Structures, 2018, 184: 728-741.

[24]    张振. 紧固件连接的振动松弛特性与检测研究[D]. 上海:同济大学,2017.

Zhang Zhen. Study on Vibration Loosening Characteristics and Detection of Fastener Connections[D]. Shanghai: Tongji University, 2017.

[25]    Hu B G, Dokainish M A. Damped vibrations of laminated composite plates—modeling and finite element analysis[J]. Finite elements in analysis and design, 1993, 15(2): 103-124.

[26]    Tian H, Li B, Liu H, et al. A new method of virtual material hypothesis-based dynamic modeling on fixed joint interface in machine tools[J]. International Journal of Machine Tools and Manufacture, 2011, 51(3): 239-249.

[27]    Adams R D, Bacon D G C. Measurement of the flexural damping capacity and dynamic Young's modulus of metals and reinforced plastics[J]. Journal of Physics D: Applied Physics, 1973, 6(1): 27.


PDF(3138 KB)

Accesses

Citation

Detail

段落导航
相关文章

/