一个新的超大范围混沌系统及其自适应滑模控制

徐昌彪1,钟 德2,夏 诚2,黎 周1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (3) : 125-130.

PDF(1047 KB)
PDF(1047 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (3) : 125-130.
论文

一个新的超大范围混沌系统及其自适应滑模控制

  • 徐昌彪1,钟 德2,夏 诚2,黎 周1
作者信息 +

A new chaotic system with parameter b in a super-large range and its adaptive sliding mode control

  • XU Changbiao1, ZHONG De2, XIA Cheng2, LI Zhou1
Author information +
文章历史 +

摘要

提出了一个超大范围的混沌系统,其中参数 的取值为[0,107]。理论分析了系统的动力学特性,考察了系统的Lyapunov指数谱、分岔图以及Poincare映射。设计了系统的硬件电路,并用Multisim软件进行了电路仿真,构建了一个系统在未知参数条件下全局稳定的自适应控制器和一个对给定信号追踪与未知参数辨识的自适应滑模控制器。仿真结果表明所设计控制器是有效的。

Abstract

A new chaotic system with parameter in a super-large range of [0,107] was proposed.The system’s dynamic characteristics were theoretically analyzed, and its Lyapunov exponent spectrum, bifurcation diagram and Poincare mapping were investigated.The system’s hardware circuit was designed and the circuit simulation was done with the software Multisim.An adaptive controller with global stability was constructed under the condition of unknown parameters, and an adaptive sliding mode controller was built to realize tracking control of a given signal and identification of unknown parameters.Simulation results showed that the designed controllers are effective.

关键词

混沌系统 / 超大范围 / 自适应控制 / 滑模控制

Key words

chaotic system / super-wide range / adaptive control / sliding mode control

引用本文

导出引用
徐昌彪1,钟 德2,夏 诚2,黎 周1. 一个新的超大范围混沌系统及其自适应滑模控制[J]. 振动与冲击, 2019, 38(3): 125-130
XU Changbiao1, ZHONG De2, XIA Cheng2, LI Zhou1. A new chaotic system with parameter b in a super-large range and its adaptive sliding mode control[J]. Journal of Vibration and Shock, 2019, 38(3): 125-130

参考文献

[1] 曾强洪, 朱石坚, 楼京俊,等. 基于滑模控制投影混沌同步在隔振系统中的应用研究[J]. 振动与冲击, 2010, 29(12):114-117.
Zeng Qianghong,Zhu Shijian,Lou Jinjun,Zhang Xing. The application of projective synchronization to vibration isolation system based on sliding mode control[J]. Journal of Vibration and Shock, 2010, 29(12): 114-117.
[2] Vaidyanathan S. Adaptive Control of a Chemical Chaotic Reactor[J]. International Journal of Pharmtech Research, 
2015, 8(3):377-382.
[3] Plotnick R E. :Fractals and Chaos in Geology and Geophysics[J]. Journal of Geology, 1994, 102(1):117-118.
[4] Vaidyanathan S. Global Chaos Synchronization of the Lotka-Volterra Biological Systems with Four Competitive Species via Active Control[J]. International Journal of Pharmtech Research, 2015, 8(6):206-217.
[5] Lorenz N. Deterministic Nonperiodic Flow [J]. Journal of the Atmospheric Sciences,1963, 20: 130-141.
[6] Chen Guanrong, Ueta Tetsushi. Yet another chaotic attractor [J]. International Journal of Bifurcation & Chaos, 1999, 9(7):1465-1466.
[7] Lü Jinhu, Chen Guanrong. A new chaotic attractor coined [J]. International Journal of Bifurcation & Chaos, 2002, 12(3):659-661.
[8] Chua L O, Komuro M, Matsumoto T. The double scroll family[J]. IEEE Transactions on Circuits & Systems, 1986, 33(11):1072-1118.
[9] Liu C, Liu T, Liu L, et al. A new chaotic attractor[J]. Chaos Solitons & Fractals, 2004, 22(5):1031-1038.
[10] 杨晓丽, 孙中奎. 关于非自治Duffing-Van Der Pol混沌系统完全同步的研究[J]. 振动与冲击, 2010, 29(11):131-134.
Yang Xiaoli,Sun Zhongkui. Research on complete synchronization of non-autonomous chaotic Duffing-Van Der Pol systems [J]. Journal of Vibration and Shock, 2010, 29(11): 131-134.
[11] 张建雄,唐万生,徐勇.一个新的三维混沌系统[J].物理学报, 2008, 57(11):6799-6807.
Zhang Jianxiong, Tang Wansheng, Xu Yong. A new three-dimensionl chaotic system[J]. Acta Phys. Sin., 2008, 57(11):6799-6807.
[12] 张坦通. 一个新型对数混沌系统及其电路仿真[J]. 电子制作, 2016(15):99-100.
 Zhang Tangtong. A new logarithmic chaotic system and its circuit simulation[J]. Practical Electronics, 2016(15):99-100.
[13] Wang X, Chen G. A chaotic system with only one stable equilibrium[J]. Communications in Nonlinear Science & Numerical Simulation, 2012, 17(3):1264-1272.
[14] Zhang X, Zhu H, Yao H. Analysis of a new three-dimensional chaotic system[J]. Nonlinear Dynamics, 2011, 67(1):335-343.
[15] Pappu C S, Flores B C. Generation of high-range resolution radar signals using the Lorenz chaotic flow[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2010, 7669:76690T-76690T-12.
[16] Kuwashima F, Taniguchi S, Nonaka K, et al. Generation of a wide-range THz wave with a chaotic oscillation in a laser[C]// 2009:7-12.
[17] Dmitriev B S, Zharkov Y D, Skorokhodov V N, et al. Generation and control of wide-range microwave chaotic signals TWT-generator[C]// International Conference on Actual Problems of Electron Devices Engineering. IEEE, 2014:29-34.
[18] Liu J, Zhang W. A new three-dimensional chaotic system with wide range of parameters[J]. Optik - International Journal for Light and Electron Optics, 2013, 124(22):5528-5532.
[19] 贾红艳,陈增强,袁著祉.一个大范围超混沌系统的生成和电路实现[J].物理学报, 2009, 58(7):4469-4476.
Jia Hongyan, Chen Zengqiang, Yuan Zhuzhi. Generation and circuit implementation of a large range hyper-chaotic system[J]. Acta Phys. Sin, 2009, 58(7): 4469-4476.
[20] 梅蓉,陈谋.一类超大范围超混沌系统的动力学分析和电路实现[J].四川大学学报(工程科学版),2012, 44(5):171-175.
Mei Rong, Chen Mou. Dynamic Analysis of a Class of Large Range of Hyper-chaotic Systems and Its Circuit Achievement[J]. Journal of Sichuan University (Engineering Science), 2012, 44(5):171-175.
[21] Yu X, Wu Z. Corrections to “Stochastic Barbalat's Lemma and Its Applications” [Jun 12 1537-1543][J]. Automatic Control IEEE Transactions on, 2014, 59(5):1386-1390.
 

PDF(1047 KB)

364

Accesses

0

Citation

Detail

段落导航
相关文章

/