超大型冷却塔风-雨双向耦合作用机理和气动力分布研究

余文林1,2,柯世堂1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (3) : 131-140.

PDF(5721 KB)
PDF(5721 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (3) : 131-140.
论文

超大型冷却塔风-雨双向耦合作用机理和气动力分布研究

  • 余文林1,2,柯世堂1
作者信息 +

Wind-rain bidirectional coupled action mechanism and aerodynamic force distribution of super large cooling towers

  • YU Wenlin1,2, KE Shitang1
Author information +
文章历史 +

摘要

传统研究大多仅关注风单项驱动雨对于结构表面的冲击效应,均忽略了暴雨对脉动风湍流效应的反作用。针对国内已建成210m世界最高超大型冷却塔,以风-雨双向耦合算法为核心,基于计算流体动力学(CFD)方法采用连续相和离散相模型分别进行风场和雨滴的模拟迭代。首先,对比研究9种不同风速和雨强组合对塔筒表面风驱雨量、雨滴附加作用力和雨致压力系数的影响规律,揭示风雨耦合场中塔筒速度流线、湍动能强度、雨滴运行速度和轨迹的作用机理,并针对不同工况的塔筒表面压力、雨荷载以及不同高度和角度下的等效压力系数进行了定性和定量的对比分析。在此基础上,提炼出最不利风雨组合工况,并基于非线性最小二乘法原理,以子午向高度和环向角度为目标函数拟合给出了超大型冷却塔等效压力系数的计算公式和对应的二维空间曲面。研究结论可为此类超大型冷却塔在极端气候下的表面荷载精确化取值提供依据,同时加深对风雨共同作用机理的理解。

Abstract

Traditional studies mostly pay attention to shock effect of rain driven by wind on structural surfaces, but they ignore the reaction of heavy rain on pulsating wind turbulence effect.Here, aiming at 210m high super large cooling towers built in home and being the tallest ones in the world, the wind-rain bidirectional coupled algorithm was taken as the core, wind field and rain drops were iteratively simulated, respectively by using the continuous phase model and the discrete phase one based on the computational fluid dynamics (CFD) method.Firstly, the influence laws of 9 different combinations of wind speed and rain intensity on rainfall driven by wind, raindrop additional action force and wind-induced pressure coefficient of tower tube surface were studied to reveal action mechanisms of tower tube speed streamline, turbulence kinetic energy intensity, and raindrop moving speed and trajectory in wind-rain coupled field.Tower tube surface pressure, rain load, and equivalent pressure coefficient under different heights and angles were qualitatively and quantitatively analyzed under different working conditions.Then, the most unfavorable wind-rain combination working condition was extracted.The calculation formula of equivalent pressure coefficient and the corresponding 2-D space surface for super large cooling towers were fitted taking meridian height and circumferential angle as the objective function based on the principle of the nonlinear least square method.The study conclusions provided a basis for accurately determining tower tube surface loads of such super large cooling towers in extreme weather and deepening the understanding wind-rain combined action mechanism.

关键词

超大型冷却塔 / 风-雨双向耦合 / 数值模拟 / 作用机理 / 气动力分布

Key words

super large cooling tower / wind-rain bidirectional coupling / numerical simulation / mechanism of action / aerodynamic distribution

引用本文

导出引用
余文林1,2,柯世堂1. 超大型冷却塔风-雨双向耦合作用机理和气动力分布研究[J]. 振动与冲击, 2019, 38(3): 131-140
YU Wenlin1,2, KE Shitang1. Wind-rain bidirectional coupled action mechanism and aerodynamic force distribution of super large cooling towers[J]. Journal of Vibration and Shock, 2019, 38(3): 131-140

参考文献

[1] 武际可. 大型冷却塔结构分析的回顾与展望[J]. 力学与实践, 1996, 18(6): 1-5.
WU Jike. Review and prospect of structural analysis of large cooling towers [J]. Mechanics and Practices, 1996, 18(6): 1-5.
[2] 柯世堂, 侯宪安, 赵林,等. 超大型冷却塔风荷载和风振响应参数分析:自激力效应[J]. 土木工程学报. 2012, 45(12): 45-53.
KE Shitang, HOU Xianan, ZHAO Lin, etc. Super large cooling tower wind load and wind vibration response parameters analysis: effect of self-excited force [J]. Journal of Civil Engineering. 2012, 45(12): 45-53.
[3] Blockena B, Carmeliet J. A review of wind-driven rain research in building science [J]. Journal of Wind Engineering and Industrial Aerodynamics. 2004, 92(13): 1079-1130.
[4] Choi E C C. Simulation of wind-driven-rain around a building [J]. Journal of Wind Engineering & Industrial Aerodynamics, 1993, 46(52): 721-729.
[5] 吴小平. 低层房屋风雨作用效应的数值研究[D]. 浙江大学建筑工程学院 浙江大学, 2008.
WU Xiaoping. Numerical studies of low-rise building wind and rain effect [D]. Zhejiang University College of Construction Engineering Zhejiang University, 2008.
[6] 陈博文. 低矮房屋表面风雨压力CFD数值模拟[D]. 哈尔滨工业大学, 2009.
CHEN Bowen. Low building surface wind pressure CFD numerical simulation [D]. Harbin Industrial University, 2009.
[7] 董辉, 高乾丰, 邓宗伟,等. 大型风力机风雨荷载特性数值研究[J]. 振动与冲击, 2015, 34(15): 17-22.
DONG Hui, GAO Qianfeng, DENG Zongwei, etc. Large wind turbine wind load characteristics of the numerical study [J]. Journal of Vibration and Shock, 2015, 34(15): 17-22.
[8] 高乾丰, 董辉, 邓宗伟,等. 大型风力机风雨结构三场耦合分析[J]. 中南大学学报(自然科学版), 2016, 47(3): 1011-1016.
GAO Qianfeng, DONG Hui, DENG Zongwei, etc. Large wind turbine wind structure in three coupling analysis [J]. Journal of Central South University (Natural Science Edition), 2016, 47(3): 1011-1016.
[9] 白海峰, 李宏男. 架空输电线路风雨致振动响应研究[J]. 电网技术, 2009, 33(2):36-40.
BAI Haifeng, LI Hongnen. Research on the vibration response of overhead transmission lines [J]. Grid Technology, 2009, 33(2): 36-40.
[10] 李宏男, 任月明, 白海峰. 输电塔体系风雨激励的动力分析模型[J]. 中国电机工程学报, 2007, 27(30): 43-48.
LI Hongnan, REN Yueming, BAI Haifeng. Rain-wind-induced Dynamic Model for Transmission Tower System [J]. Proceedings of the Csee, 2007, 27(30): 43-48.
[11] 唐善然, 陈文礼, 李惠. 斜拉索风雨激振的数值模拟研究[J]. 工程力学, 2012, 29(3): 124-132.
TANG Shanran, CHEN Wenli, LI Hui. Rain vibration of the stay cables of the numerical simulation study [J]. Journal of Engineering Mechanics, 2012, 29(3): 124-132.
[12] 王凌云, 徐幼麟. 斜拉桥斜拉索的风雨振动:参数研究[J]. 工程力学, 2009, 26(7): 147-154.
WANG Lingyun, XU Youlin. The storm of the stay cables of cable-stayed bridge vibration: parameter study [J]. Journal of Engineering Mechanics, 2009, 26(7): 147-154.
[13] 顾明, 李寿英, 杜晓庆. 斜拉桥拉索风雨激振理论模型和机理研究[J]. 空气动力学学报, 2007, 25(2): 169-174.
GU Ming, LI Shouying, DU Xiaoqing. Cable-stayed bridge cable vibration theory model and mechanism study [J]. Journal of Air Dynamics, 2007, 25(2): 169-174.
[14] Mcfarquhar G M, List R. The Raindrop Mean Free Path and Collision Rate Dependence on Rainrate for Three-Peak Equilibrium and Marshall-Palmer Distributions [J]. Journal of the Atmospheric Sciences, 2010, 48(3): 1999-2004.
[15] Gunn R, Kinzer G D. The Terminal Fall Velocity for Water Droplets in Stagnant Air [J]. Journal of the Atmospheric Sciences, 1949, 6(4): 243-248.
[16] Marshall J S, Palmer W M. The distribution of raindrops with size [J]. Journal of Meteorology, 1948, 38(5): 165-166.
[17] KE S T, LIANG J, ZHAO L, et al. Influence of ventilation rate on the aerodynamic interference for two IDCTs by CFD [J]. Wind and Structures, 2015, 20(3): 449-468.
[18] 江帆. Fluent高级应用与实例分析[M]. 清华大学出版社, 2008.
JIANG Fan. Fluent advanced application and instance analysis [M]. Tsinghua University Press, 2008.
[19] DL\T5339-2006. 火力发电厂水工设计规范[S]. 中国, 北京, 2006.
DL\T5339-2006. Hydraulic engineering design specification for thermal power plants [S]. China, Beijing, 2006.
[20] VGB-R610Ue. VGB-Guideline: structural design of cooling tower-technical guideline for the structural design, computation and execution of cooling towers [S]. Essen: BTR Bautechnik Bei Kuhlturmen, 2005.
[21] 孙天风, 周良茂. 无肋双曲线型冷却塔风压分布的全尺寸测量和风洞研究[J]. 空气动力学学报, 1983, 12(4): 12-17.
SUN Tianfeng ZHOU Liangmao. Without ribs the elliptic wind pressure distribution of the cooling tower full size measurement and wind tunnel study [J]. Journal of Air Dynamics, 1983, 12 (4): 12-17.

PDF(5721 KB)

360

Accesses

0

Citation

Detail

段落导航
相关文章

/