基于频域子结构法的动量轮弹性边界微振动研究

李雄飞,程 伟

振动与冲击 ›› 2019, Vol. 38 ›› Issue (3) : 156-163.

PDF(1173 KB)
PDF(1173 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (3) : 156-163.
论文

基于频域子结构法的动量轮弹性边界微振动研究

  • 李雄飞,程 伟
作者信息 +

Micro-vibration of RWA-flexible interface coupled system based on frequency domain substructure method

  • LI Xiongfei,  CHENG Wei
Author information +
文章历史 +

摘要

动量轮会与卫星弹性安装界面发生结构耦合,并将导致动量轮微振动的定量分析更为复杂。基于频域子结构方法对动量轮与弹性边界耦合系统的微振动特性进行研究,首先,对频域子结构法进行了推导,引入界面坐标转换矩阵表达不同坐标系下子结构的综合;其次,将动量轮模型简化成12自由度质量-弹簧-阻尼系统,并采用Lagrange能量方法建立其运动方程;再次,将耦合系统划分成动量轮与弹性边界两个子结构,应用推导所得的频域子结构法综合子结构的频响函数得到耦合系统的频响函数矩阵并计算其响应;最后,运用数值仿真和多体动力学仿真进行了验证。结果表明:频域子结构法适用于预测动量轮在弹性边界的微振动响应,具有较高的分析精度和计算效率。

Abstract

Reaction wheel assembly (RWA) can have a structural coupling with the flexible installation interface of a satellite to cause the quantitative analysis of RWA micro-vibration being more complicated.Here, based on the frequency domain substructure method (FDSM), micro-vibration characteristics of a RWA-flexible interface coupled system were investigated.Firstly, FDSM was derived, and the interface coordinate transformation matrix was introduced to synthesize substructures under different coordinates.Secondly, the RWA model was simplified as a 12-DOF mass-spring-damper system, its equation of motion was deduced using Lagrange equation.Thirdly, the coupling system was divided into two substructures including RWA and flexible interface.Then the derived FDSM was adopted to synthesize frequency response functions (FRFs) of the two substructures to achieve the FRF matrix of the coupling system, it was used to calculate the system’s dynamic responses.Finally, the numerical simulation and the multi-body dynamic one were done for the system to verify the system’s dynamic responses obtained above.The results showed that FDSM is appropriate for predicting micro-vibration of the RWA-flexible interface coupled system and it has higher analysis accuracy and computation efficiency.

关键词

动量轮 / 微振动 / 弹性边界 / 耦合 / 频域子结构法

Key words

reaction wheel assembly / micro-vibrations / flexible interface / couple / frequency domain substructure method

引用本文

导出引用
李雄飞,程 伟. 基于频域子结构法的动量轮弹性边界微振动研究[J]. 振动与冲击, 2019, 38(3): 156-163
LI Xiongfei, CHENG Wei. Micro-vibration of RWA-flexible interface coupled system based on frequency domain substructure method[J]. Journal of Vibration and Shock, 2019, 38(3): 156-163

参考文献

[1] Li X F, Cheng W, Li M. Testing and Analysis of Micro-vibrations Generated by Control Moment Gyroscope in Different Installation Boundary [C]//Applied Mechanics and Materials. Trans Tech Publications, 2016, 851: 453-458.
[2] 谢溪凌, 王超新, 陈燕毫, 等. 一种Stewart隔振平台的动力学建模及实验研究[J]. 振动与冲击, 2017, 36(12): 201-207.
XIE Xi-ling, WANG Chao-xin, CHEN Yan-hao, et al. Dynamic modeling and experiment of a hybrid passive/active Steward vibration isolation platform [J]. Journal of vibration and shock, 2017, 36(12): 201-207.
[3] Chen J P, Cheng W. Research on the disturbance generated by a solar array drive assembly driving a flexible system [J]. Journal of Theoretical and Applied Mechanics, 2016, 54(3): 1001-1012.
[4] Li X, Cheng W, Li X F. Modelling of Gimbal Control Moment Gyro and analysis of gimbal disturbance impact [J]. Tehnicki Vjesnik-Technical Gazette, 2014, 21(6): 1189-1200.
[5] 张鹏飞, 程伟, 王和, 等. 航天器反作用轮扰动建模及参数辨识[J]. 北京航空航天大学学报, 2010, 36(7): 879-882.
ZHANG Peng-fei, CHENG Wei, WANG He, et al. Disturbance modeling and parameters identification of reaction wheel assembly on spacecraft [J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 879-882.
[6] Liu K C, Maghami P, Blaurock C. Reaction wheel disturbance modeling, jitter analysis, and validation tests for solar dynamics observatory [C]//AIAA Guidance, Navigation and Control Conference and Exhibit. 2008: 7232.
[7] Zhou W Y, Li D X, Luo Q, et al. Analysis and testing of microvibrations produced by momentum wheel assemblies [J]. Chinese Journal of Aeronautics, 2012, 25(4): 640-649.
[8] Taniwaki S, Ohkami Y. Experimental and numerical analysis of reaction wheel disturbances [J]. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 2003, 46(2): 519-526.
[9] Narayan S S, Nair P S, Ghosal A. Dynamic interaction of rotating momentum wheels with spacecraft elements [J]. Journal of Sound and Vibration, 2008, 315(4): 970-984.
[10] Masterson R A. Development and validation of empirical and analytical reaction wheel disturbance models [D]. Massachusetts: Massachusetts Institute of Technology, 1999.
[11] Elias L M. A structurally coupled disturbance analysis method using dynamic mass measurement techniques, with application to spacecraft-reaction wheel systems [D]. Massachusetts: Massachusetts Institute of Technology, 2001.
[12] Elias L, Miller D. A coupled disturbance analysis method using dynamic mass measurement techniques [C]//43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2002: 1252.
[13] Elias L M, Dekens F G, Basdogan I, et al. Methodology for modeling the mechanical interaction between a reaction wheel and a flexible structure [C]//Astronomical Telescopes and Instrumentation. International Society for Optics and Photonics, 2003: 541-555.
[14] Zhou W Y, Aglietti G S, Zhang Z. Modelling and testing of a soft suspension design for a reaction/momentum wheel assembly [J]. Journal of Sound and Vibration, 2011, 330(18): 4596-4610.
[15] Zhang Z, Aglietti G S, Ren W. Coupled microvibration analysis of a reaction wheel assembly including gyroscopic effects in its accelerance [J]. Journal of Sound and Vibration, 2013, 332(22): 5748-5765.
[16] Zhang Z, Aglietti G S, Ren W. Coupled microvibration analysis of a reaction wheel assembly including gyroscopic effects in its accelerance [J]. Journal of Sound and Vibration, 2013, 332(22): 5748-5765.
[17] Addari D, Aglietti G S, Remedia M. Experimental and numerical investigation of coupled microvibration dynamics for satellite reaction wheels [J]. Journal of Sound and Vibration, 2017, 386: 225-241.
[18] 张鹏飞, 程伟, 赵煜. 考虑耦合效应的动量轮扰动测量[J]. 北京航空航天大学学报, 2011, 37(8):948-952.
ZHANG Peng-fei, CHENG Wei, ZHAO Yu. Measure of reaction wheels disturbance considering coupling effect [J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(8): 948-952.
[19] 邹元杰, 王泽宇, 葛东明. 用于航天器微振动分析的扰源解耦加载方法[J]. 航天器工程, 2016, 25(4): 40-47.
ZOU Yuan-jie, WANG Ze-yu, GE Dong-ming. Decoulped Loading Method of Disturbance Sources for Spacecraft Micro-vibrations Analysis [J]. Spacecraft Engineering, 2016, 25(4): 40-47.
[20] Imregun M, Robb D A, Ewins D J. Structural modification and coupling dynamic analysis using measured FRF data [C]//International Modal Analysis Conference, 5th, London, England. 1987: 1136-1141.
[21] Tsai J S, Chou Y F. The identification of dynamic characteristics of a single bolt joint [J]. Journal of Sound and Vibration, 1988, 125(3): 487-502.
[22] Luo Q, Li D, Zhou W, et al. Dynamic modelling and observation of micro-vibrations generated by a Single Gimbal Control Moment Gyro [J]. Journal of Sound and Vibration, 2013, 332(19): 4496-4516.
[23] Sun W Q, Cheng W. Finite element model updating of honeycomb sandwich plates using a response surface model and global optimization technique [J]. Structural and Multidisciplinary Optimization, 2017, 55(1): 121-139.
[24] 姜东, 吴邵庆, 费庆国, 等. 蜂窝夹层复合材料不确定性参数识别方法[J]. 振动与冲击, 2015, 34(2): 14-19.
JIANG Dong, WU Shao-qing, FEI Qing-guo, et al. Parameter identification approach of honeycomb sandwich composite with uncertainties [J]. Journal of vibration and shock, 2015, 34(2): 14-19.

PDF(1173 KB)

381

Accesses

0

Citation

Detail

段落导航
相关文章

/