设计了一种以曲面-弹簧-滚子机构为负刚度元件的非线性隔振系统,得到了系统零刚度条件;针对系统存在过载或欠载使用的情况,建立了谐波位移激励下系统非线性动力学方程,并应用谐波平衡法求解系统响应;分别分析了最小刚度为零和正刚度时,不同激励幅值、偏移量、阻尼比时的系统动态;最后通过实验验证了最小刚度为零时过载系统的动态特性。结果表明,所设计的隔振系统具有低频隔振效果,系统在过载使用时呈渐软或渐软-渐硬的刚度特性,具有很好的隔振性能;设计和使用中应当合理选择设置隔振器刚度系数、阻尼系数,并适当限制系统所受的最大激励幅值,从而保证系统具有更好的隔振性能。
Abstract
Here, a nonlinear vibration isolation system was designed by taking a curved surface-spring-roller mechanism as a negative stiffness element to obtain the system’s zero stiffness condition.Aiming at cases of the system’s overload use and underload use, the system’s nonlinear dynamic equations were established under harmonic displacement excitations, and the system’s responses were solved by using the harmonic balance method (HBM).When the system’s minimum stiffness was zero or positive value, the dynamic characteristics of the system were analyzed under different excitation amplitudes, offset displacements and damping ratios.Finally, the dynamic characteristics of the overload system with the minimum stiffness of zero were verified through tests.The results showed that the designed vibration isolation system has the low-frequency vibration isolation effect, the system reveals gradually softening or gradually softening-gradually hardening stiffness characteristics when it is used under overload, and it has good vibration isolation performance; in design and application, the stiffness and damping coefficients of the isolator should be chosen reasonably, and the maximum excitation amplitude should be limited to ensure the system has better vibration isolation performance.
关键词
非线性隔振器 /
低频隔振 /
谐波平衡法 /
过载系统
{{custom_keyword}} /
Key words
Nonlinear isolator /
Low frequency /
Harmonic Balance Method /
overload system
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DJ.Mead. Passive Vibration Control. John Wiley and Son,1999.
[2] Carrella A. Passive vibration isolators with high static low dynamic stiffness[D]. University of Southampton, 2008.
[3] Virgin L N, Davis R B. Vibration isolation using buckled struts[J]. Journal of Sound and Vibration, 2003, 260: 965-973.
[4] R.A. Ibrahim. Recent advances in nonlinear passive vibration isolators[J]. Journal of Sound and Vibration, 2008, 314: 371-452.
[5] Carrella A, Brennan M J, Waters T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007, 301: 678-689.
[6] Carrella A, Brennan M J, Waters T P, et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness[J]. International Journal of Mechanical Sciences, 2012, 55: 22-29.
[7] Kovacic I, Brennan M J, Waters T, et al. A study of a nonlinear vibration isolator with a quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2008, 315(3): 700-711.
[8] Kovacic I, Brennan M J, Lineton B, et al. Effect of a static force on the dynamic behaviour of a harmonically excited quasi-zero stiffness system[J]. Journal of Sound and Vibration, 2009, 325(4-5): 870-883.
[9] Thanh D L, Kyoung K A. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat[J]. Journal of Sound and Vibration, 2011, 330: 6311-6355.
[10] Thanh D L, Kyoung K A. Experimental investigation of a vibration isolation system using negative stiffness structure[J]. Mechanical Sciences, 2013, 158:1011-1029.
[11] Platus D L. Negative-stiffness-mechanism vibration isolation systems[J]. Proceedings of SPIE-The International Society for Optical Engineering, Vibration Control in Microelectronics, Optics, and Metrology, San Jose, CA, USA, 1991,1619: 44-54.
[12] Platus D L. Negative-stiffness-mechanism vibration isolation systems[J], Proceedings of SPIE, 1999, 3786: 98-105.
[13] Yang J, Xiong Y P, Xing J T. Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism[J].Journal of Sound and Vibration, 2013, 332: 167-183.
[14] Jiaxi Zhou, Xinlong Wang, Daolin Xu, et al. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolation with cam-roller-spring mechanisms[J]. Journal of Sound and vibration,2015,346:53-69.
[15] 胡光军,周生通,李鸿光.一种非线性隔振器的静力分析与实验研究[J].噪声与振动控制,2011,31(6):69-71.
Hu Guangjun, Zhou Shengtong, Li Hongguang. Static Analysis and Experiment of a Nonlinear Vibration Isolator[J].Journal of Noise and Vibration Control,2011,31(6):69-71.
[16] Liu X, Huang X, Hua H, et al. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector[J]. Journal of Sound and Vibration, 2013, 332: 3359-3376.
[17] 刘兴天,孙婧雅,肖锋,等. 准零刚度微振动隔振器的原理和性能研究[J].振动与冲击, 2013, 32(21): 69-73.
Liu Xingtian, Sun Jingya, Xiao Feng, Hua Hongxing. Principle and performance of a quasi-zero stiffness isolator for micro-vibration isolation[J].Journal of Vibration and Shock, 2013, 32(21): 69-73.
[18] Huang. X, Liu. X, Hua. H, et al. Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: A theoretical and experimental study[J]. Journal of Sound and Vibration, 2014,212: 2319-2336.
[19] 闫振华. 非公路车辆座椅非线性悬架静动态特性研究[D].长春:吉林大学,2014.
Yan Zhenhua. Study on the Static and Dynamic Characteristics of Nonlinear Seat for Off-road Vehicles[D].Changchun: JiLin University,2014.
[20] 孟令帅. 新型准零刚度隔振器的设计和特性研究[D].北京:军事医学科学院,2015.
Meng Lingshuai. Design and Characteristics Analysis of the Novel Quasi-zero Stiffness Isolator[D].Beijing: Academy of Military Medical Science,2015.
[21]任旭东. 空气弹簧准零刚度隔振器的特性分析及应用研究[D].北京:军事医学科学院,2017.
Ren Xudong. Characteristics Analysis and Application Study of the Quasi-zero Stiffness Isolator Using Air Spring [D].Beijing: Academy of Military Medical Science,2017.
[22] 蓝双, 杨晓翔. 基于遗传算法的准零刚度隔振系统优化设计[J]. 噪声与振动控制, 2016, 36(6): 173-176.
LAN Shuang , YANG Xiaoxiang.Optimum design for a quasi-zero stiffness vibration isolation system based on genetic algorithm[J].Noise and Vibration Contral,2016,36(6):173-176
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}