基于MRE的变刚度变阻尼减振器设计研究

毕凤荣1,2,曹荣康1,Xu Wang3,马腾2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (3) : 192-198.

PDF(1803 KB)
PDF(1803 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (3) : 192-198.
论文

基于MRE的变刚度变阻尼减振器设计研究

  • 毕凤荣1,2,曹荣康1,Xu Wang3,马腾2
作者信息 +

Variable stiffness and damping shock absorber design based on MRE

  • BI Fengrong1,2, CAO Rongkang1,  XU Wang3,  MA Teng2
Author information +
文章历史 +

摘要

针对磁流变弹性体材料的变刚度及变阻尼特性,将其成功应用于半主动控制减振器研究中。设计专用磁场发生夹具,制备了具有良好磁流变效应的磁流变弹性体材料,并对其力学性能参数进行测试;根据磁流变弹性体材料在挤压工作模式和剪切工作模式的特性,设计了刚度、阻尼均可变化的减振器,并利用有限元软件对该设计方案进行电磁场仿真分析;试制减振器原理样机,在INSTRON万能拉压试验机上,测试其在不同磁感应强度下的变刚度变阻尼特性。试验结果表明:在模拟半主动控制策略下其动刚度变化最大可达55.4%,阻尼变化可达214.3%,证明了该设计方案的可行性。

Abstract

Magneto-rheological elastomer (MRE) material has features of variable stiffness and damping, it is successfully applied in studying semi-active control shock absorbers.Here, special fixtures were designed for magnetic field generation, and MRE material with good MR effect was made and its mechanical performance parameters were measured.According to characteristics of MRE material in squeezing work mode and shearing one, a shock absorber with variable stiffness and damping was designed.The finite element software was used to do an electromagnetic field simulation analysis for the design scheme, and the prototype of the shock absorber was made.Its variable stiffness and variable damping performances were measured on an INSTRON universal tensile and compression testing machine.The test results showed that under the semi-active control strategy, the maximum change of the shock absorber’s dynamic stiffness can reach 55.4% and that of its damping can reach 214.3% to verify the feasibility of the design scheme.

关键词

磁流变弹性体 / 减振器 / 变阻尼 / 变刚度 / 半主动控制

Key words

magneto-rheological elastomers / shock absorber / variable stiffness / variable damping / semi-active control

引用本文

导出引用
毕凤荣1,2,曹荣康1,Xu Wang3,马腾2. 基于MRE的变刚度变阻尼减振器设计研究[J]. 振动与冲击, 2019, 38(3): 192-198
BI Fengrong1,2, CAO Rongkang1, XU Wang3, MA Teng2. Variable stiffness and damping shock absorber design based on MRE[J]. Journal of Vibration and Shock, 2019, 38(3): 192-198

参考文献

[1]  魏克湘,孟光,夏平,等. 磁流变弹性体隔振器的设计与振动特性分析[J]. 机械工程学报, 2011, 47(11):69-74.
Wei Kexiang,Meng Guang,Xia Ping,Bai Quan. Design and vibration characteristics analysis of magnetorheological elastomer isolators[J]. Journal of Mechanical Engineering, 2011, 47(11):69-74(in Chinese) .
[2]  龚兴龙, 邓华夏, 李剑锋,等. 磁流变弹性体及其半主动吸振技术[J]. 中国科学技术大学学报, 2007, 37(10):1192-1203.
Gong Xing-long, Deng Hua-xia, Li Jianfeng, et al. Magnetorheological elastomers and corresponding semi-active vibration absorption technology[J]. Journal of University of Science and Technology of China,2007, 37(10):1192-1203(in Chinese) .
[3]  Ge L, Xuan S, Liao G, et al. Stretchable polyurethane sponge reinforced magnetorheological material with enhanced mechanical properties[J]. Smart Materials & Structures,2015, 24(3).
[4]  Fu J, Wang Y, Li P, et al. Research on Hybrid Isolation System for Micro-Nano-Fabrication Platform[J]. Advances in Mechanical Engineering, 2014, 2014(1):243247-243247.
[5]  Shi H F, Yu M, Zhu M, et al. An investigation of the dynamic behaviors of an MRE isolator subjected to constant and alternating currents[J]. Smart Material & Structures, 2016, 25(7):077002.
[6]  Sun S S, Chen Y, Yang J, et al. The development of an adaptive tuned magnetorheological elastomer absorber working in squeeze mode[J]. Smart Materials & Structures, 2014, 23(7):075009.
[7]  Sun S S, Deng H, Yang J, et al. An adaptive tuned vibration absorber based on multilayered MR elastomers[J]. Smart Materials & Structures, 2015, 24(4).
[8]  Sun S S, Yang J, Li W H, et al. Development of an isolator working with magnetorheological elastomers and fluids[J]. Mechanical Systems & Signal Processing, 2016, 83:371-384.
[9]  Behrooz M, Wang X, Gordaninejad F. Performance of a new magnetorheological elastomer isolation system[J]. Smart Materials & Structures, 2014, 23(4):045014.
[10] Nurul A A W, Amri Mazlan S, Ubaidillah, et al. Fabrication and investigation on field-dependent properties of natural rubber based magneto-rheological elastomer isolator[J]. Smart Material Structures, 2016, 25(10).
[11] Li Y, Li J, Li W, et al. A state-of-the-art review on magnetorheological elastomer devices[J]. Smart Materials & Structures, 2014, 23(12):123001.
[12] 黄学功, 刘春, 王炅. 硅橡胶基磁流变弹性体相对磁导率研究[J]. 功能材料, 2016, 47(2):2143-2147.
Huang Xuegong,Liu Chun,Wang Jiong. Rearch on the relative permeability of magnetorheological elastomer based on silicone rubber[J]. Journal of Functional Materials, 2016, 47(2):2143-2147(in Chinese) .
[13] 夏永强, 余淼, 刘胜龙. 磁流变弹性体隔振缓冲器设计及实验研究[J]. 振动与冲击, 2010, 29(9):196-200.
Xia Yongqiang, Yu Miao, Liu Shenglong. Design and experimental study on isolation buffer of magneto-rheological elastomer [J]. Journal of Vibration and Shock, 2010, 29(9):196-200.
[14] 余淼, 夏永强, 王四棋,等. 磁流变弹性体的隔振缓冲器磁路分析[J]. 振动与冲击, 2011, 30(4):47-50.
Yu Miao,Xia Yongqiang,Wang Siqi,et al. Magnetic analysis of an isolation buffer of magneto-rheological elastomer[J]. Journal of Vibration and Shock,2011, 30(4):47-50(in Chinese) .
[15] 黄伍德, 陈光冶, 车驰东. 基于橡胶刚度频散的隔振器阻抗研究[J]. 振动与冲击, 2016, 35(9):164-167.
Huang Wude,Chen Guangye,Che Chidong. Rubber isolator impedance based on stiffness dispersion[J]. Journal of Vibration and Shock,2016, 35(9):164-167(in Chinese) .
[16] Xing Z, Yu M, Sun S, et al. A hybrid magnetorheological elastomer-fluid (MRE-F) isolation mount: development and experimental validation[J]. Smart Materials & Structures, 2016, 25(1):015026.

PDF(1803 KB)

Accesses

Citation

Detail

段落导航
相关文章

/