集中冲击荷载作用下修正Timoshenko梁剪力动载系数研究

曹振,马海英,周军勇,李徽,石雪飞

振动与冲击 ›› 2019, Vol. 38 ›› Issue (3) : 44-50.

PDF(814 KB)
PDF(814 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (3) : 44-50.
论文

集中冲击荷载作用下修正Timoshenko梁剪力动载系数研究

  • 曹振,马海英,周军勇,李徽,石雪飞
作者信息 +

SDLF of a modified Timoshenko beam under a concentrated impact load at its mid-span

  • CAO Zhen, MA Haiying, ZHOU Junyong, LI Hui, SHI Xuefei
Author information +
文章历史 +

摘要

推导了修正Timoshenko梁运动方程正交条件,并在此基础上得到了梁在跨中冲击荷载作用下的剪力响应计算方法。根据该方法计算的结果与经典Timoshenko梁理论计算结果对比,发现在梁长细比较小的情况下采用修正Timoshenko梁理论计算结果更精确。采用该方法得到了不同长细比固结梁和简支梁在跨中无增长时间三角形和有增长时间三角形集中力冲击荷载作用下的最大剪力动力荷载系数(DLF),并拟合出计算公式,可根据梁长细比和荷载持续时间与构件第一阶自振周期的比值来计算最大剪力动载系数,并用来确定墩柱等构件在冲击作用下的抗剪需求。

Abstract

Orthogonality conditions of a modified Timoshenko beam were derived, and then its shear response calculation method under a concentrated impact load at its mid-span was deduced.The calculated results using this method were compared with those using the classical Timoshenko beam theory.It was shown that the calculation results using the modified Timoshenko beam theory are more accurate when the beam’s slenderness ratio is smaller.Using this method, the maximum shear dynamic load factors (SDLFs) of a two-end fixed beam and a simply supported one with different slenderness ratios under a concentrated impact load impulse with and without a triangular time history at the beam mid-span were calculated, and the calculation formula was fitted.It was shown that the maximum SDLF can be calculated according to a beam’s slenderness ratio and the ratio of the load duration to the beam’s 1st order natural vibration period, the maximum SDLF can be used to determine the anti-shear demand of a beam under impact load.

关键词

修正Timoshenko梁 / 集中力冲击荷载 / 动力响应 / 剪力动力荷载系数

Key words

modified Timoshenko beam / concentrated impact load / dynamic response / shear dynamic load factor

引用本文

导出引用
曹振,马海英,周军勇,李徽,石雪飞. 集中冲击荷载作用下修正Timoshenko梁剪力动载系数研究[J]. 振动与冲击, 2019, 38(3): 44-50
CAO Zhen, MA Haiying, ZHOU Junyong, LI Hui, SHI Xuefei. SDLF of a modified Timoshenko beam under a concentrated impact load at its mid-span[J]. Journal of Vibration and Shock, 2019, 38(3): 44-50

参考文献

[1]. Buth C E, Williams W F, Brackin M S, et al. Analysis of large truck collisions with bridge piers: phase 1[R]. Report of guidelines for designing bridge piers and abutments for vehicle collisions.(No. FHWA/TX-10/9-4973-1). Texas: Texas Transportation Institute, The Texas A&M University, 2010.
[2]. 陈林, 肖岩. 桥墩防车辆撞击研究综述[J]. 公路交通科技: 2012, 29(8): 78-86.
CHEN Lin, XIAO Yan. Review of Studies on Vehicle Anti-collision on Bridge Piers[J]. Journal of Highway and Transportation Research and Development. 2012, 29(8): 78-86.
[3]. Gomez, Nevin L. Performance of Circular Reinforced Concrete Bridge Piers Subjected to Vehicular Collisions[D]. Amherst, Mass. : Masters Theses. University of Massachusetts – Amherst, 2014
[4]. Saatci S, Vecchio F J. Effects of shear mechanisms on impact behavior of reinforced concrete beams[J]. ACI structural Journal, 2009, 106(1): 78–86.
[5]. Kishi N, Mikami H, Matsuoka K G, et al. Impact behavior of shear-failure-type RC beams without shear rebar[J]. International Journal of Impact Engineering, 2002, 27(9): 955-968.
[6]. Pham T M, Hao H. Behavior of fiber-reinforced polymer-strengthened reinforced concrete beams under static and impact loads[J]. International Journal of Protective Structures, 2017, 8(1): 3-24.
[7]. AASHTO LRFD Bridge Design Specifications[S]. American Association of State Highway and Transportation Officials. Washington, D.C., 2004
[8]. BS EN 1991-1-7:2006. Eurocode1: Actions on structures-Part 1-7: General actions- Accidental actions[S]. The European Union Regulation. Brussels. 2006
[9]. JTG D60—2015. 公路桥涵设计通用规范 [S]. 中华人民共和国交通运输部. 北京,2015
JTG D60—2015. General Specification for Design of Highway Bridges and Culverts[S]. Ministry of Transport of the People's Republic of China. Beijing, 2015
[10]. El-Tawil S, Severino E, Fonseca P. Vehicle collision with bridge piers[J]. Journal of Bridge Engineering, 2005, 10(3): 345-353.
[11]. Biggs J M, Biggs J M. Introduction to structural dynamics[M]. New York :McGraw-Hill College, 1964.
[12]. 方秦, 柳锦春. 地下防护结构[M]. 北京:中国水利水电出版社, 2010.
FANG Qin, LIU Jinchun. Underground Protective structures[M]. Beijing: China Water & Power Press, 2010
[13]. 方秦, 郭东, 张亚栋, 等. 梁的剪力动力系数的确定[J]. 工程力学, 2005, 22(5): 181-185.
FANG Qin, GUO Dong, ZHANG Ya-dong, et al. Determination of Shear Dynamic Factor in Beams[J]. Engineering Mechanics, 2005, 22(5): 181-185.
[14]. 钱七虎, 王明洋. 高等防护结构计算理论[M]. 南京:江苏科学技术出版社, 2009.
QIAN Qihu, WANG Mingyang. Calculation Theory for Advanced Protective Structures[M]. Nanjing: Phoenix Science Press, 2009.
[15]. Magnusson J, Hallgren M, Ansell A. Shear in concrete structures subjected to dynamic loads[J]. Structural Concrete, 2014, 15(1): 55-65.
[16]. Jones N. Structural impact[M]. London: Cambridge university press, 2011.
[17]. Ross T J, Krawinkler H. Impulsive direct shear failure in RC slabs[J]. Journal of Structural Engineering, 1985, 111(8): 1661-1677.
[18]. 万春风.Timoshenko梁运动方程的修正及其在结构冲击响应中的应用[D].上海:同济大学,2003.
WAN Chunfeng. Modification of Timoshenko beam motion equation and its application to structural shock response[D]. Shanghai: Tongji University, 2003.
[19]. 吴晓, 罗佑新. 用 Timoshenko 梁修正理论研究功能梯度材料梁的动力响应[J]. 振动与冲击, 2011, 30(10): 245-248.
Wu Xiao, Luo You-xin. Dynamic response of a beam with functionally graded materials with Timoshenko beam correction theory[J]. Journal of Vibration and Shock, 2011, 30(10): 245-248.
[20]. 王乐, 冷德新. 剪切系数对 Timoshenko 梁模型影响研究[J]. 导弹与航天运载技术, 2015 (3): 57-59.
WANG Le, LENG De-xin. Effects of Shear Coefficient on Timoshenko Beam[J]. Missiles and Space Vehicles, 2015 (3): 57-59.
[21]. Hutchinson J R. Shear coefficients for Timoshenko beam theory[J]. JOURNAL OF APPLIED MECHANICS, 2001, 68(1): 87-92.
[22]. 曾翔. (2014). 冲击和快速加载作用下钢筋混凝土梁柱构件性能试验与数值模拟研究 [D].长沙:湖南大学,2014.
ZENG Xiang. Experimental and numerical study of behaviors of RC beams and columns under impact loadings and rapid loadings[D].Changsha: Hunan University,2014.
[23]. Thilakarathna H M I, Thambiratnam D P, Dhanasekar M, et al. Numerical simulation of axially loaded concrete columns under transverse impact and vulnerability assessment[J]. International Journal of Impact Engineering, 2010, 37(11): 1100-1112.
[24]. El-Tawil S, Severino E, Fonseca P. Vehicle collision with bridge piers[J]. Journal of Bridge Engineering, 2005, 10(3): 345-353.
[25]. Buth, C. E., Brackin, M. S., Williams, W. F., & Fry, G. T. Collision loads on bridge piers: phase 2[R]. Report of guidelines for designing bridge piers and abutments for vehicle collisions (No. FHWA/TX-11/9-4973-2). Texas: Texas Transportation Institute, The Texas A&M University, 2011.
[26]. Al-Thairy H, Wang Y C. Simplified FE vehicle model for assessing the vulnerability of axially compressed steel columns against vehicle frontal impact[J]. Journal of Constructional Steel Research, 2014, 102: 190-203.

PDF(814 KB)

Accesses

Citation

Detail

段落导航
相关文章

/