单位冲激抽样序列频谱与傅里叶级数收敛性分析

杜峰 1,唐岚 2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (4) : 15-19.

PDF(579 KB)
PDF(579 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (4) : 15-19.
论文

单位冲激抽样序列频谱与傅里叶级数收敛性分析

  • 杜峰 1,唐岚 2
作者信息 +

Analysis of frequency spectrum and the Fourier series convergence of the unit impulse train

  •  DU Feng 1   TANG Lan 2
Author information +
文章历史 +

摘要

由傅里叶变换的时移和频移特性,单位冲激抽样序列有两种频谱函数:周期型频谱和级数型频谱,其中周期型频谱函数的推导并不严谨,缺少傅里叶级数收敛性分析。对此,论文提出通过证明两频谱函数等价来验证周期冲激信号傅里叶级数的收敛性。根据脉冲函数定义,运用极限和积分思想,利用抽样函数性质,证明了级数型频谱函数本质是强度和周期均为圆频率的频域冲激序列,验证了冲激抽样序列傅里叶级数的收敛性,周期型频谱函数的傅里叶级数与级数型频谱函数的分析也再次验证了级数的收敛性,但不能验证冲激点不存在吉布斯现象的观点。

Abstract

According to the shift theorem in the time and frequency domain,the unit impulse train has two frequency spectrum functions which were called the periodic spectrum and the series spectrum.The periodic spectrum is not rigorous for the lack of the analysis of the Fourier series convergence.According to the definition of the Dirac function,it proved that the series spectrum is in fact an impulse train in the frequency domain whose energy and period are equal to the angular frequency value.The sampling function characteristic,the limit and integral theory were made full use of.It shows that the Fourier series of the unit impulse train is convergent.The convergence was verified again by the analyses about the difference between the series spectrum and the Fourier series of the periodic spectrum.It failed to verify the miss of the Gibbs phenomenon.

关键词

单位冲激抽样序列 / 频谱 / 傅里叶级数收敛性 / 吉布斯现象

Key words

unit impulse train / frequency spectrum / Fourier series convergence / Gibbs phenomenon

引用本文

导出引用
杜峰 1,唐岚 2. 单位冲激抽样序列频谱与傅里叶级数收敛性分析[J]. 振动与冲击, 2019, 38(4): 15-19
DU Feng 1 TANG Lan 2. Analysis of frequency spectrum and the Fourier series convergence of the unit impulse train[J]. Journal of Vibration and Shock, 2019, 38(4): 15-19

参考文献

[1] 秦毅,郭磊,吴宏钢.冲击振动提取的优化稀疏表征方法[J].振动与冲击, 2016,35(01): 54-58.
QIN Yi, GUO Lei, WU Hong-gang. Optimal sparse representation method for impact vibration extraction[J]. Journal of Vibration and Shock, 2016, 35(01): 54-58.
[2] 杜峰,葛晓成,陈翔,等.路面功率谱密度换算及不平度建模理论研究[J].振动.测试与诊断, 2015, 35(05): 981-986.
DU Feng, GE Xiao-cheng, CHEN Xiang, et al. Conversion of spatial power spectral density and study on road irregularity modeling theory [J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(5): 981-986.
[3] 方建超,毛雪松.非等间隔采样信号傅里叶频谱分析方法[J].计算机应用, 2016, 36(02): 492-494.
FANG Jian-chao, MAO Xue-song. Fourier spectrum analysis for non-uniform sampled signals [J]. Journal of Computer Applications, 2016, 36(02): 492-494.
[4] DU Feng. Frequency Weighting Filter Design for Automotive Ride Comfort Evaluation[J]. Chinese Journal of Mechanical Engineering, 2016, 29(4): 727-738.
[5] 王宝祥.信号与系统(第四版)[M]. 北京:高等教育出版社,北京,2015.
[6] 郑君里.信号与系统(第三版)[M]. 北京:高等教育出版社,北京,2011.
[7] 宫二玲,孙志强,刘亚东.从非周期信号的FT到周期信号的FS[J]. 电气电子教学学报, 2015,37(06): 42-44.
GONG Er-ling, SUN Zhi-jian, LIU Ya-dong. From the Fourier transform of non-periodic signals to the Fourier series of periodic signals[J]. Journal of Electrical & Electronic Education, 2015, 37(06): 42-44.
[8] 刘涤尘,熊元新.冲激抽样信号傅里叶变换的分析[J].武汉水利电力大学学报, 1997,30(01): 62-63.
LIU Di-chen, XIONG Yuan-xin. Analysis on impulse sample signal Fourier transform[J]. Engineering Journal of Wuhan University, 1997, 30(01): 62-63.
[9]熊元新,刘涤尘.周期冲激函数与黎曼引理[J].华中师范大学学报(自然科学版), 2001,35(01): 24-26.
XIONG Yuan-xin, LIU Di-chen. Period impulse function and Riemann lemma[J]. Journal of Central China Normal University(Natural Sciences), 2001, 35(01): 24-26.
[10]熊元新,刘涤尘.傅里叶级数的收敛性与吉伯斯现象[J].武汉大学学报(工学版), 2001,34(01): 69-71.
XIONG Yuan-xin, LIU Di-chen. Convergence of Fourier series and Gibbs phenomenon[J]. Engineering Journal of Wuhan University, 2001, 34(01): 69-71.
[11] 吴亚敏.单位冲激函数的性质[J].太原师范学院学报(自然科学版), 2015, 14(01): 13-16.
WU Ya-min. The nature of the unit impulse function[J]. Journal of Taiyuan Normal University(Natural Science Edition) , 2015, 14(01): 13-16.
[12] 同济大学数学系.高等数学(下册)(第七版)[M]. 北京:高等教育出版社,北京,2014

PDF(579 KB)

Accesses

Citation

Detail

段落导航
相关文章

/