具有弹性扭转悬架的非公路车辆平顺性及侧倾稳定性分析

柴牧,Subhash Rakheja, 上官文斌

振动与冲击 ›› 2019, Vol. 38 ›› Issue (4) : 191-198.

PDF(2875 KB)
PDF(2875 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (4) : 191-198.
论文

具有弹性扭转悬架的非公路车辆平顺性及侧倾稳定性分析

  • 柴牧,Subhash Rakheja, 上官文斌
作者信息 +

Ride and roll stability analysis of off-road vehicles with torsio-elastic suspension

  • CHAI Mu,RAKHEJA Subhash,SHANGGUAN Wenbin
Author information +
文章历史 +

摘要

建立了装备弹性扭转悬架的三维非公路车辆模型,研究了不同弹性扭转悬架布置方式下车辆的平顺性及侧倾稳定性。由后轴装备弹性扭转悬架的车辆实验验证了模型的准确性。通过对驾驶室座椅处的振动响应和车身侧倾角响应的分析可知,弹性扭转悬架不仅可以提高车辆的平顺性,还能提高其侧倾稳定性。且具有前后弹性扭转悬架的车辆对座椅处各方向的振动抑制效果最好,而仅前轴装有弹性扭转悬架比仅后轴有弹性扭转悬架车辆具有更好的乘坐舒适性。最后对比了载荷变化对不同悬架布置方式下车辆振动响应的影响,结果表明,载荷变化对装备弹性扭转悬架的车辆影响较小。

Abstract

A three-dimensional ride dynamic off-road vehicle model with torsio-elastic suspension was formulated to investigate the potential of ride comfort improvement as well as roll stability preservation for different suspension arrangements.The model validation was based on the field measurements of a rear-suspended vehicle with torsio-elastic suspension.According to the vibration response analysis near the operator seat and the roll angle of vehicle chassis,the results show that the torsio-elastic suspension could improve the ride performance as well as increase the roll stability of the vehicle.The results also illustrate that the fully-suspended vehicle could obviously decrease the vibration at the driver seat along all axes,and front-suspended vehicel could provide a batter ride performance,compared the rear-suspended vehicle.The loading effect was also analysed for vehicles with different suspension options,which illustrates that the torsio-elastic suspension is less sensitive to variations in the load.
 

关键词

非公路车辆 / 弹性扭转悬架 / 平顺性 / 侧倾稳定性

Key words

off-road vehicles / torsio-elastic suspension / ride comfort / roll stability

引用本文

导出引用
柴牧,Subhash Rakheja, 上官文斌. 具有弹性扭转悬架的非公路车辆平顺性及侧倾稳定性分析[J]. 振动与冲击, 2019, 38(4): 191-198
CHAI Mu,RAKHEJA Subhash,SHANGGUAN Wenbin . Ride and roll stability analysis of off-road vehicles with torsio-elastic suspension[J]. Journal of Vibration and Shock, 2019, 38(4): 191-198

参考文献

[1] Smets M P H, Eger T R, Grenier S G. Whole-body vibration experienced by haulage truck operators in surface mining operations: A comparison of various analysis methods utilized in the prediction of health risks[J]. Applied Ergonomics, 2010, 41(6): 763-770.
[2] Tiemessen I J, Hulshof C T J, Frings-Dresen M H W. An overview of strategies to reduce whole-body vibration exposure on drivers: A systematic review[J]. International Journal of Industrial Ergonomics, 2007, 37(3): 245-256.
[3] 王国军, 蒋美华, 陈欣, 等. 某4×4轻型轮式越野车平顺性多工况脉输入试验研究[J]. 汽车工程学报, 2017, 7(1): 61-65.
WANG Guo-jun, JIANG Mei-hua, CHEN Xin, et al. Ride Quality Test for a 4×4 Cross-Country Vehicle with Multi-pulse Inputs[J]. Chinese Journal of Automotive Engineering, 2017, 7(1): 61-65.
[4] International Standard Organization. ISO 2631-1-1997. Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 1: General requirements[S]. Denver, America: Printed by IHS, 1997.
[5] Els P S, Theron N J, Uys P E, et al. The ride comfort vs. handling compromise for off-road vehicles[J]. Journal of Terramechanics, 2007, 44(4): 303-317.
[6] Rehnberg A, Drugge L. Ride comfort simulation of a wheel loader with suspended axles[J]. International Journal of Vehicle Systems Modelling and Testing, 2008, 3(3): 168-188.
[7] Cao D, Rakheja S, Su C Y. Comparison of Roll Properties of Hydraulically and Pneumatically Interconnected Suspensions for Heavy Vehicles[C]. Commercial Vehicle Engineering Congress and Exhibition, Chicago, United States: SAE International, 2005.
[8] 冯金芝, 谭辉, 郑松林, 等. 车辆主动油气悬架系统分层控制策略的研究[J]. 汽车工程, 2013, 35(7): 599-603.
FENG Jin-zhi, TAN Hui, ZHENG Sun-lin, et al. A Study on the Hierarchical Control Strategy for Active Hydro-pneumatic Suspension System of Vehicles[J]. Automotive Engineering, 2013, 35(7): 599-603.
[9] Faris W F, BenLahcene Z, Ihsan S I. Assessment of different semi-active control strategies on the performance of off-road vehicle suspension systems[J]. International Journal of Vehicle Systems Modelling and Testing, 2010, 5(2): 254-271.
[10] 刘刚, 陈思忠, 王文竹, 等. 基于AMEsim和Simulink的油气悬架仿真与试验[J]. 振动、测试与诊断, 2016, 36(2): 346-350.
LIU Gang, CHEN Si-zhong, WANG Wen-zhu, et al. Simulation and Experimental Research of a Novel Hydro-pneumatic Suspension Based on AMEsim and Simulink[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(2): 346-350.
[11] Crolla D A. Off-road vehicle dynamics[J]. Vehicle System Dynamics, 1981, 10(4-5): 253-266.
[12] Pazooki A, Cao D, Rakheja S, et al. Ride dynamic evaluations and design optimisation of a torsio-elastic off-road vehicle suspension[J]. Vehicle System Dynamics, 2011, 49(9): 1455-1476.
[13] Crolla D A, Horton D N L, Stayner R M. Effect of tyre modelling on tractor ride vibration predictions[J]. Journal of Agricultural Engineering Research, 1990, 47(47): 55-77.
[14] Hac A. Adaptive control of vehicle suspension[J]. Vehicle System Dynamics, 1987, 16(2): 57-74.
[15] 赵珩, 卢士富. 路面对四轮汽车输入的时域模型[J]. 汽车工程, 1999, 21(2): 112-117.
ZHAO Heng, LU Shi-fu. A Vehicle’s Time Domain Model with Road Input on Four Wheels[J]. Automotive Engineering, 1999, 21(2): 112-117.

PDF(2875 KB)

Accesses

Citation

Detail

段落导航
相关文章

/