基于奇异值差分谱理论的大型转子轴心轨迹提纯

张景润 李伟光 李振 赵学智

振动与冲击 ›› 2019, Vol. 38 ›› Issue (4) : 199-205.

PDF(3150 KB)
PDF(3150 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (4) : 199-205.
论文

基于奇异值差分谱理论的大型转子轴心轨迹提纯

  • 张景润  李伟光  李振  赵学智
作者信息 +

Purification for a large rotor axis’s orbit based on the difference spectrum theory of singular value

  • ZHANG Jingrun,LI Weiguang,LI Zhen,ZHAO Xuezhi
Author information +
文章历史 +

摘要

针对大型轴承实验台的转子轴心轨迹的提纯问题,提出采用奇异值差分谱提纯轴心轨迹的方法。奇异值差分谱可以直观表示有用分量和噪声分量的差异,由差分谱首个峰值可以确定有用分量个数。将原始振动信号构造Hankel矩阵,对其进行奇异值分解(Singular value decomposition,SVD),利用奇异值差分谱来选取特征奇异值,通过SVD重构得到特征信号,利用特征信号得到提纯的轴心轨迹。比较了SVD和谐波小波包算法的处理效果,结果表明,由奇异值差分谱提纯的轴心轨迹更清晰。

Abstract

Aiming at purification of rotor axis’s orbit in a large bearing testing platform,an approach was proposed based on the difference spectrum theory of singular value.The difference spectrum could directly describe the difference between the beneficial component and noise.The number of the useful components could be determined by the first peak of the difference spectrum.The Hankel matrix was constructed from original vibration signal and was decomposed by the singular value decomposition (SVD).The feature singular values were selected using the difference spectrum and feature components were obtained by the SVD reconstruction,and then the purified rotor axis’s orbit could be obtained with the feature components.The processing effect of SVD and harmonic wavelet packet algorithm was compared,and the results show that the axis orbit purified by the difference spectrum of singular value was much clearer.

关键词

奇异值分解 / 大型转子 / 奇异值差分谱 / 轴心轨迹 / 提纯

Key words

singular value decomposition / large rotor / difference spectrum of singular value / axis orbit / purification

引用本文

导出引用
张景润 李伟光 李振 赵学智. 基于奇异值差分谱理论的大型转子轴心轨迹提纯[J]. 振动与冲击, 2019, 38(4): 199-205
ZHANG Jingrun,LI Weiguang,LI Zhen,ZHAO Xuezhi. Purification for a large rotor axis’s orbit based on the difference spectrum theory of singular value[J]. Journal of Vibration and Shock, 2019, 38(4): 199-205

参考文献

[1] 陈仁祥,汤宝平,吕中亮. EEMD滤波的转子轴心轨迹提纯方法[J].重庆大学学报,2012,35(11):15-20.
CHEN Ren-xiang, TANG Bao-ping, LÜ Zhong-liang. A method of rotor orbit purification based on ensemble empirical mode decomposition filter [J]. Journal of Chongqing University, 2012,35 (11): 15-20.
[2] 尹爱军,孙丽萍,王见. 偏微分方程在轴心轨迹提纯中的应用 [J].重庆大学学报,2011,34(12):72-77.
YIN Ai-jun, SUN Li-ping, WANG Jian. Purification of the shaft centerline orbit with partial differential equation, [J]. Journal of Chongqing University, 2011.34(12): 72-77.
[3] 张文斌,周晓军,杨先勇,等.基于谐波窗方法的转子轴心轨迹提纯 [J].振动与冲击,2009,28(08):74-77+200.
ZHANG Wen-bing, ZHOU Xiao-jun, YANG Xian-yong et al. Harmonic window method for purification of axis trace. [J].Journal of Vibration and Shock, 2009,28(8):74-77+200.
[4] 徐金甫,韦岗,梁树雄. 一种基于奇异值分解的带噪语音识别方法[J]. 华南理工大学学报(自然科学版),2001, 29(01):91-93.
XÜ Jin-fu, WEI Gang, LIANG Shu-xiong. A noisy speech recognition method based on singular value decomposition [J]. Journal of South China University of Technology(Natural Science Edition), 2001,29(01): 91-93.
[5] 罗忠亮,林土胜,杨军,等. 基于EMD和SVD的虹膜特征提取及识别[J]. 华南理工大学学报(自然科学版),2011, 39(02):65-70.
LUO Zhong-liang, LIN Tu-sheng,YANG Jun,et al. Extraction and recognition of iris features based on empirical mode decomposition and singular value decomposition [J]. Journal of South China University of Technology(Natural Science Edition), 2011,39(02):65-70.
[6] 沈飞,陈超,严如强. 奇异值分解与迁移学习在电机故障诊断中的应用[J]. 振动工程学报,2017, 30 (01):118-126.
SHEN Fei, CHEN Chao, YAN Ru-qiang. Application of SVD and transferlearning strategy on motorfault diagnosis [J]. Journal of Vibration Engineering, 2017, 30(01):118-126.
[7] 赵学智,叶邦彦,陈统坚.奇异值差分谱理论及其在车床主轴箱故障诊断中的应用[J].机械工程学报,2010, 46 (1):100-108.
ZHAO Xue-zhi, YE Bang-yan, Chen Tong-jian. Difference spectrum theory of singular value and its application to the fault diagnosis of headstock of lathe [J]. Journal of Mechanical Engineering, 2010, 46(1):100 -108.
[8] 张超,陈建军,徐亚兰. 基于EMD分解和奇异值差分谱理论的轴承故障诊断方法[J]. 振动工程学报,2011, 24 (05):539-545.
ZHANG Chao, CHEN Jian-jun, XÜ Ya-lan. A bearing fault diagnosis method based on EMD and difference spectrum theory of singular value [J]. Journal of Vibration Engineering, 2011,24(05): 539-545.
[9] Ming Zhao, Xiaodong Jia. A novel strategy for signal denoising using reweighted SVD and its applications to weakfault feature enhancement of rotating machinery[J]. Mechanical Systems & Signal Processing,2017, 94 (15) : 129-147.
[10] 张磊, 彭伟才, 原春晖,等.奇异值分解降噪的改进方法[J].中国船舰研究,2012,7(5):83-88.
ZHANG Lei, PENG Wei-cai,YUAN Chun-hui,et al. An improved method for noise reduction based on singular value decomposition [J]. Chinese Journal of Ship Research, 2012, 7(5):83-88.
[11] 杨文献,任兴民,姜节胜.基于奇异熵的信号降噪技术研究 [J].西北工业大学学报,2016,19(3):368-371.
YANG Wen-xian, REN Xing-min, JIANG Jie-sheng.On improving the effectiveness of the new noise reduction technique based on singularity spectrum [J]. Northwestern Poly Technical University, 2001, 19(3): 368-371.
[12] 赵学智,聂振国,叶邦彦,等.信号有效奇异值的数量规律及其在特征提取中的应用[J].振动工程学报, 2016,(03):532-541.
ZHAO Xue-zhi, NIE Zhen-guo, YE Bang-yan,et al. Number law of effective singular values of signal and its application to feature extraction [J].Journal of Vibration Engineering, 2016, (03):532-541.
[13] 胥永刚,孟志鹏,陆明,等. 基于双树复小波和奇异差分谱的齿轮故障诊断研究 [J]. 振动与冲击,2014,33 (01):11-16+23.
XÜ Yong-gang, MENG Zhi-peng, LU Ming,et al. Gear fault diagnosis based on dual-tree complex wavelet transform and singular value difference spectrum [J]. Journal of Vibration and Shock, 2014, 33(01):11-16+23.
[14] Newland D E. Harmonic Wavelet Analysis [C].// Proceedings of the Royal Society of London. A, 1993, 43 (10):203-225.
[15]  Newland D E.Wavelet Analysis of Vibration: Part 1:theory [J].Journal of Vibration and Acoustics,Transactions of the ASME, 1994, 116(10) : 409-416.

PDF(3150 KB)

Accesses

Citation

Detail

段落导航
相关文章

/