舵机刚度特性决定着航行器对舵面位置的“把控”能力,航行器运动时随着舵面负载扰动频率的变化,刚度特性也是不断变化的,如果某一频率点上刚度达到最小值,引起了舵面剧烈抖动,整个航行器的运行安全将无法保证。所以舵机控制器设计过程中需要大量的仿真计算,从开始设计阶段找到提高舵机刚度特性的方法。本文首先建立电液舵机的系统模型,仿真得到系统刚度特性,然后基于LMI(Linear Matrix Inequality)方法设计了 控制器,通过求解含约束条件的LMI优化问题使设计的控制器能够较大程度上的提高系统动刚度。最后仿真结果表明:控制器能提高了系统抗扰动能力,系统的刚度在一定扰动频率范围内不变,扰动通道增益减小。在系统参数发生波动的情况下依然能保持较好的抗扰动能力,鲁棒性较强,结合实际项目验证了设计控制器的有效性。
Abstract
The stiffness of a steering gear determines the control ability of the aircraft to the position of the rudder.When the aircraft is moving,with the change of the load disturbance frequency of the rudder,the stiffness characteristics are also changing.If the stiffness of a frequency point is minimum,the rudder surface is drastically jitter,and the safety of the entire vehicle will not be guaranteed.Therefore,a large number of simulation calculations are needed during the design of a steering gear controller,and the method of reducing the disturbance should be found at the beginning of the design phase.In this paper,the system model of an electro-hydraulic rudder was set up first,and the stiffness characteristics of the system were obtained by simulation.Then the H∞ controller was designed based on the Linear Matrix Inequality method,by solving the LMI optimization problem with constraint conditions.The designed controller can improve the dynamic stiffness of the system to a great extent.Finally,the simulation results show that the controller can improve the anti disturbance ability of the system.The stiffness of the system is constant in a certain range of disturbance frequency,and the control gain of the disturbance channel is reduced.When the system parameters fluctuate,the system can still keep good anti-disturbance ability and strong robustness,the design of the controller was verified by the actual project.
关键词
电液舵机颤振 /
动刚度 /
LMI方法 /
控制
{{custom_keyword}} /
Key words
flutter of electro-hydraulic actuator /
dynamic stiffness /
LMI method /
control
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 许行之, 高亚奎, 章卫国. 考虑舵机动力学的舵回路系统颤振特性分析[J]. 计算机仿真, 2014, 31(10):80-85
XU X ZH, GAO Y K, ZHANG W G. Analysis of flutter characteristics of rudder loop system considering actuator dynamics[J]. Computer Simulation, 2014, 31(10):80-85
[2] 夏栋. 电动舵机伺服机构动力学特性研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
XIA D. The Research of Dynamic Characteristics on Electromechanical Actuator Servo Mechanism[D]. Harbin: Harbin Institute of Technology, 2014.
[3] 肖新华, 焦维佳, 刘凯波. 电液舵机抑制颤振的设计思路[J]. 战术导弹控制技术, 2009, 26(3):32-38.
XIAO X H, JIAO W J,LIU K B. Design idea of electro hydraulic actuator to restrain flutter[J]. Control Technology of Tactical Missile, 2009, 26(3):32-38.
[4] 吴娟, 张家盛, 康光会. 舵机系统动刚度的分析研究[J]. 科学技术与工程, 2008, 8 (4) :1124-1128.
WU J, ZHANG J SH, KANG G H. Analysis and research of the impedance of hydraulic booster location system[J]. Science Technology and Engineering, 2008, 8(4): 1124-1128.
[5] 吴娟, 张家盛, 康光会. 舵机动刚度试验台的建模与仿真[J]. 机床与液压, 2008, 36(7):134-136.
WU J, ZHANG J SH, KANG G H. Modeling and Simulation of rudder dynamic stiffness test platform[J]. Machine Tool & Hydraulics, 2008, 36(7):134-136.
[6] 邓丽霞. 液压舵机电液伺服调节器的性能分析与参数优化[D]. 武汉: 华中科技大学, 2007.
DENG J X. Performance Analysis and Parameter Optimization of Electro Hydraulic Servo Regulator for Hydraulic Rudder[D]. Wuhan: Huazhong University of Science and Technology, 2007.
[7] 俞立. 鲁棒控制线性矩阵不等式处理方法[M], 清华大学出版社,2002.
[8] PETERSEN I R, UGRINOVSKII V A, SAVKIN A V. Robust Control Design using H∞ Methods[J]. Communications & Control Engineering, 2000, 9(13):149–154.
[9] 付永领, 陈辉, 刘和松,等. 基于自抗扰控制的导弹电液舵机系统研究[J]. 宇航学报, 2010, 31(4): 1051-1055.
FU Y L, CHEN H, LIU H SH, et al. Study on missile electro-hydraulic actuator system based on active disturbance rejection control method[J]. Journal of Astronautics, 2010, 31(4): 1051-1055.
[10] 王占林. 近代电气液压伺服控制[M] 北京: 北京航空航天大学出版社,2005: 98–110.
[11] 贾英民.鲁棒 控制[M].北京:科学出版社,2007.
[12] 孙金生,王执铨.不确定离散时滞系统的D稳定鲁棒容错控制[J]. 控制理论与应用, 2002, 19(6): 968-971.
SUN J SH,WANG ZH Q.D-stable faint-tolerant control for uncertain discrete-delay systems[J]. Control Theory & Applications. 2002, 19(6): 968-971.
[13] 骆光照, 王鹏, 吴梅,等. 弹用电动舵机的混合H2/H∞控制器设计[J]. 弹箭与制导学报, 2003, 23(3):4-6.
LUO G ZH, WANG P, WU M, et al. Design of hybrid H2/H-infinity controller for an electrically driven electromechanical actuator[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2003, 23(3):4-6.
[14] 宗臻, 王诗宓. 基于LMI的输出反馈鲁棒完整性控制器设计[J]. 控制理论与应用, 2005, 22(5):682-971.
ZONG ZH, WANG SH F. Design of output feedback controller with robust integrity based on LMI approach[J]. Control Theory & Applications, 2005, 22(5): 682-971.
[15] FUJIWARA Y, HAMAMOTO K. Robust control of 4WS actuator using LMI[C]// Decision and Control, 1996. Proceedings of the, IEEE Conference on. IEEE, 1996:1795-1796 vol.2.
[16] Jiang P G, Jiang X F, Li C W, et al. Robust H∞ control for the networked control systems based on LMI.[J]. Control & Decision, 2004, 19(1):17–21.
[17] RIZZELLO G, NASO D, TURCHIANO B, et al. Robust Position Control of Dielectric Elastomer Actuators Based on LMI Optimization[J]. IEEE Transactions on Control Systems Technology, 2016, 24(6):1909-1921.
[18] 宋斌, 马广富, 李传江,等. 基于H∞鲁棒控制的挠性卫星姿态控制[J]. 系统仿真学报, 2005, 17(4):968-970.
SONG B, MA G F, LI CH J, et al. Attitude control of flexible satellite based on H∞ robust control[J]. Journal of System Simulation, 2005, 17(4):968-970.
[19] 林肖芬, 昂海松, 夏道家. 飞机操纵系统的动态刚度及其与舵面耦合固有振动特性分析[J]. 南京航空航天大学学报, 1989, 21(4):15-21.
LIN X F, ANG H SH, XIA D J. Analysis of the dynamic stiffness of aircraft control system and its coupled vibration characteristics with the rudder[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1989, 21(4):15-21.
[20] 王鸿辉,吴娟,袁朝辉.舵机动刚度试验台研制分析[J].液压与气动, 2004, 11: 1-4.
WANG H H, WU J, YUAN Zh H. Analysis and research of the tester applied to test the impedance of hydraulic booster location system[J].Chinese Hydraulices & Pneumatics, 2004, 11: 1-4.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}