基于加权最小二乘法辨识的后缘襟翼智能旋翼振动载荷闭环控制仿真研究

周金龙1,董凌华1,杨卫东1,刘士明2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (4) : 237-244.

PDF(1479 KB)
PDF(1479 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (4) : 237-244.
论文

基于加权最小二乘法辨识的后缘襟翼智能旋翼振动载荷闭环控制仿真研究

  • 周金龙1 , 董凌华1,杨卫东1,刘士明2
作者信息 +

Closed-loop vibration control simulation of a helicopter active rotor with trailing-edge flaps based on the weighted-least-squares-error identification method

  •  ZHOU Jinlong1,DONG Linghua1,YANG Weidong1,LIU Shiming2
Author information +
文章历史 +

摘要

智能旋翼是一种行之有效的直升机旋翼振动主动控制技术,针对后缘襟翼式智能旋翼振动闭环控制问题,建立了带后缘襟翼旋翼气弹耦合动力学模型,并对后缘襟翼进行了开环控制仿真,通过对后缘襟翼扫幅、扫频和扫相分析,研究了后缘襟翼偏转运动的幅值、频率与相位对旋翼振动载荷的影响,采用高阶谐波控制算法,结合加权最小二乘法辨识系统传递矩阵,并考虑驱动器饱和现象,进行了后缘襟翼智能旋翼闭环控制仿真,仿真结果表明旋翼通过频率垂向振动载荷降幅最高达到87%,取得了良好的控制效果,为后缘襟翼智能旋翼闭环控制系统工程实现提供参考。

Abstract

An active rotor is effective active vibration control for helicopters.Focusing on closed-loop vibration control of an active rotor with active controlled flap (ACF),a coupled aero-elastic model with ACF was developed.Open-loop control simulation for the ACF was conducted through amplitude sweep,frequency sweep,and phase sweep,and their influence on rotor vibratory loads was studied.The higher harmonic control algorithm was employed in the closed-loop control simulation,while the weighted-least-squares-error (WLSE) method was used to identify the transfer matrix of the active rotor system.Actuator saturation was also taken into account using the auto-weighting method.The controller demonstrates satisfying control performance,and the vertical vibratory load of passing frequency is reduced by up to 87%.The simulation results will be useful to direct the engineering implementation of the closed-loop control system for the active rotor.
 

关键词

旋翼 / 直升机 / 振动控制 / 控制仿真 / 智能旋翼 / 加权最小二乘法

Key words

rotor / helicopter / vibration control / control simulation / active rotor / WLSE

引用本文

导出引用
周金龙1,董凌华1,杨卫东1,刘士明2. 基于加权最小二乘法辨识的后缘襟翼智能旋翼振动载荷闭环控制仿真研究[J]. 振动与冲击, 2019, 38(4): 237-244
ZHOU Jinlong1,DONG Linghua1,YANG Weidong1,LIU Shiming2. Closed-loop vibration control simulation of a helicopter active rotor with trailing-edge flaps based on the weighted-least-squares-error identification method[J]. Journal of Vibration and Shock, 2019, 38(4): 237-244

参考文献

[1] Friedmann P P. On-Blade Control of Rotor Vibration, Noise, and Performance: Just Around the Corner? The 33rd Alexander Nikolsky Honorary Lecture[J]. Journal of the American Helicopter Society, 2014, 59(4): 1-37.
[2] 刘士明, 杨卫东, 虞志浩, 等. 后缘小翼智能旋翼减振效果影响因素分析[J]. 振动与冲击, 2017, 36(3): 138-144.
Liu Shiming, Yang Weidong, Yu Zhihao, et al. Influence factors analysis for smart vibration control of a rotor wing with trailing edge flaps[J].Journal of Vibration and Shock, 2017, 36(3): 138-144.
[3] Patt D, Liu L, Chandrasekar J, et al. Higher-harmonic-control algorithm for helicopter vibration reduction revisited[J]. Journal of Guidance Control and Dynamics, 2005, 28(5): 918-930.
[4] Jacklin S A. Comparison of five system identification algorithms for rotorcraft higher harmonic control[R].NASA/TP-1998-207687, Moffett Field, California: Ames Research Center, 1998.
[5] 吴杰. 直升机旋翼气动弹性振动载荷研究[D]. 南京航空航天大学, 2013.
Wu Jie. Research on helicopter rotor aeroelastic vibratory loads[D], Nanjing University of Aeronautics and Astronautics,2013.
[6] 刘士明, 杨卫东, 虞志浩, 等. 带后缘小翼的旋翼振动载荷计算[J]. 航空动力学报, 2016 (6): 1496-1503.
Liu Shiming, Yang Weidong, Yu Zhihao, et al. Vibratory loads prediction of rotor with trailing edge flaps[J]. Journal of Aerospace Power, 2016 (6): 1496-1503.
[7] Theodorsen T. General theory of aerodynamic instability and the mechanism of flutter[R]. NACA report No.496:1979.
[8] Theodorsen T, Garrick I E. Nonstationary flow about a wing-aileron-tab combination including aerodynamic balance[R]. NACA report No.736:1942.
[9] Leishman J G. Unsteady lift of a flapped airfoil by indicial concepts[J]. Journal of Aircraft, 1994, 31(2): 288-297.
[10] Heffernan R M, Gaubert M. Structural and aerodynamic loads and performance measurements of an SA349/2 helicopter with an advanced geometry rotor[R]. NASA-TM-88370,Moffett Field, California: Ames Research Center,1986.
[11] Pychroniadis M. Generalized higher harmonic control- Ten years of Aerospatiale experience[C]//European Rotorcraft Forum, 16 th, Glasgow, Scotland: Royal Aeronautical Society, 1990: III7.2.1-III7.2.9.
[12] Straub F K, Byrns Jr E V. Application of higher harmonic blade feathering on the OH-6A helicopter for vibration reduction[R]. NASA-CR-4031,Mesa Arizona: McDonnell Douglas Helicopter Company,1986.
[13] Shin S J, Cesnik C E S, Hall S R. Closed‐Loop Control Test of the NASA/Army/MIT Active Twist Rotor for Vibration Reduction[J]. Journal of the American Helicopter Society, 2005, 50(2): 178-194.
[14] Roget B, Chopra I. Wind-tunnel testing of rotor with individually controlled trailing-edge flaps for vibration reduction[J]. Journal of Aircraft, 2008, 45(3): 868-879.
[15] Padthe A K, Friedmann P P, Bernstein D S. Actuator Saturation in Individual Blade Control of Rotorcraft[C]//Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ACS Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii: the American Institute of Aeronautics and Astronautics, Inc, 2012.1-27.
[16] Straub F K, Anand V R, Birchette T S, et al. Smart rotor development and wind tunnel test[C] //European Rotorcraft Forum, 35th, Hamburg, Germany: Deutsche Gesellschaft fuer Luft- und Raumfahrt, 2009: 1-21.

PDF(1479 KB)

Accesses

Citation

Detail

段落导航
相关文章

/