变速运动可压缩夹层梁稳定性的直接多尺度分析

颜婷1,杨天智1,2,丁虎1,陈立群1,3

振动与冲击 ›› 2019, Vol. 38 ›› Issue (4) : 40-44.

PDF(1559 KB)
PDF(1559 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (4) : 40-44.
论文

变速运动可压缩夹层梁稳定性的直接多尺度分析

  • 颜婷1,杨天智1,2,丁虎1,陈立群1,3
作者信息 +

Direct multiscale analysis of the stability of an axially moving compressible sandwich beam with time-dependent velocity

  • YAN Ting1,YANG Tianzhi1,2,DING Hu1,CHEN Liqun1,3
Author information +
文章历史 +

摘要

与传统的不可压缩夹层梁不同,研究了一种可压缩的复合材料夹心梁的运动稳定性。将直接多尺度法应用于轴向速度带有脉动特性的运动梁的分析过程,得到系统的固有频率,并导出次谐波共振和组合共振的可解性条件,并由此得到共振的稳定性边界。给出的数值算例说明了梁平均速度以及梁弹性模量与剪切模量的比值对稳定性边界的影响,并在此基础上比较了可压缩夹层梁与普通不可压缩梁的区别。

Abstract

The motion stability of a composite and soft-cored compressible sandwich beam was investigated,which is different from the traditional incompressible sandwich beam.The direct multiscale method was applied to the analysis process of an axially moving sandwich beam with time-dependent velocity,then the natural frequency and solvability conditions were obtained.Based on the conditions,the stability boundaries of subharmonic resonance and combination resonance were obtained.The numerical examples were presented to show the effect of mean velocity and the ratio of the elastic modulus to shear modulus on the stability boundaries,and the difference between the compressible sandwich beam and the ordinary incompressible beam was compared.

关键词

轴向运动 / 夹层梁 / 软夹心层 / 多尺度法 / 稳定性边界

Key words

 axially motion / sandwich beam / soft core / multiscale method / stability boundary

引用本文

导出引用
颜婷1,杨天智1,2,丁虎1,陈立群1,3. 变速运动可压缩夹层梁稳定性的直接多尺度分析[J]. 振动与冲击, 2019, 38(4): 40-44
YAN Ting1,YANG Tianzhi1,2,DING Hu1,CHEN Liqun1,3. Direct multiscale analysis of the stability of an axially moving compressible sandwich beam with time-dependent velocity[J]. Journal of Vibration and Shock, 2019, 38(4): 40-44

参考文献

[1] Wickert J A. Non-linear vibration of a traveling tensioned beam [J]. International Journal of Non Linear Mechanics, 1992, 27(3): 503-517.
[2] 陈树辉,黄建亮,佘锦炎. 轴向运动梁横向非线性振动研究[J]. 动力学与控制学报,2004, 2(1):40-45.
CHEN Shu-hui, Huang Jian-liang, She Jin-yan. Study on the laterally nonlinear vibration of axially moving beams [J]. Journal of Dynamics and Control, 2004, 2(1): 40-45.
[3] 丁虎,陈立群. 轴向运动黏弹性梁横向非线性受迫振动[J]. 振动与冲击,2009, 28(12): 128-131.
DING Hu, Chen Li-qun. Transverse non-linear forced vibration of axially moving viscoelastic beam[J]. Journal of vibration and shock, 2009, 28(12): 128-131.
[4] 王波. 轴向拉力对变速运动黏弹性梁参激振动稳定性的影响[J]. 动力学与控制学报,2011 ,9(4): 298-302.
WANG Bo. Stability of parametric vibration excited of an axially accelerating viscoelastic beam subjected to axial disturbing tension. Journal of Dynamics and Control, 2011 ,9(4): 298-302.
[5] 杨鑫, 陈海波. 热冲击作用下轴向运动梁的振动特性研究[J]. 振动与冲击,2017, 36(1): 8-15.
YANG Xin, CHEN Hai-bo. Vibration characteristics of an axially moving beam under thermal shocks [J]. Journal of vibration and shock, 2017, 36(1): 8-15.
[6] Yang T Z, Fang B, Chen Y, et al. Approximate solutions of axially moving viscoelastic beams subject to multi-frequency excitations [J]. International Journal of Non-Linear Mechanics, 2009, 44(2): 230-238.
[7] Ding H, Huang L L, Mao X Y, et al. Primary resonance of traveling viscoelastic beam under internal resonance [J]. Applied Mathematics and Mechanics, 2017, 38(1): 1-14.
[8] Ray K, Kar R C. Parametric instability of a sandwich beam under various boundary conditions [J]. Computers and Structures, 1995, 55(5): 857-870.
[9] Yang W P, Chen L W, Wang C C. Vibration and dynamic stability of a traveling sandwich beam [J]. Journal of Sound & Vibration, 2005, 285(3): 597-614.
[10] Lv H W, Li Y H, Liu Q K, et al. Analysis of Transverse Vibration of Axially Moving Viscoelastic Sandwich Beam with Time-Dependent Velocity [J]. Advanced Materials Research, 2011, 338: 487-490.
[11] Khdeir A A, Aldraihem O J. Free vibration of sandwich beams with soft core [J]. Composite Structures, 2016, 154(5): 179-189.
[12] Frostig Y, Baruch M. High-order buckling analysis of sandwich beams with transversely flexible core [J]. Journal of Engineering Mechanics, 1993, 119(3): 476-495.
[13] Dwivedy S K, Sahu K C, Babu S. Parametric instability regions of three-layered soft-cored sandwich beam using higher-order theory [J]. Journal of sound and vibration, 2007, 304(1): 326-344.
[14] Marynowski K. Dynamic analysis of an axially moving sandwich beam with viscoelastic core [J]. Composite Structures, 2012, 94(9): 2931-2936.
[15] 吕海炜,李映辉,李亮,等. 轴向运动软夹层梁横向振动分析[J]. 振动与冲击,2014, 33(2): 41-51.
LV Hai-wei, LI Ying-hui, LI Liang, et al. An Analysis of Transverse Vibration of Axially Moving Soft Sandwich Beam [J]. Journal of vibration and shock, 2014, 33(2): 41-51.
[16] Chakrabarti A, Chalak H D, Iqbal M, et al. Buckling analysis of laminated sandwich beam with soft core [J]. Latin American Journal of Solids and Structures, 2012, 9(3): 1-15.
[17] Vo T P, Thai H T, Nguyen T K, et al. Flexural analysis of laminated composite and sandwich beams using a four-unknown shear and normal deformation theory [J]. Composite Structures, 2017, 176(15): 388-397.
[18] Yang X D, Zhang W, Chen L Q. Transverse vibrations and stability of axially traveling sandwich beam with soft core [J]. Journal of Vibration and Acoustics, 2013, 135(5): 11-15.
[19] Öz H R, Pakdemirli M. Vibrations of an axially moving beam with time-dependent velocity [J]. Journal of Sound and Vibration, 1999, 227(2): 239-257.
 [20] 杨晓东,陈立群. 粘弹性变速运动梁稳定性的直接多尺度分析[J]. 振动工程学报,2005, 18(2): 223-226.
YANG Xiao-dong, CHEN Li-qun. Direct multiscale analysis of stability of an axially accelerating viscoelastic beam [J]. Journal of Vibration Engineering, 2005, 18(2): 223-226.

PDF(1559 KB)

Accesses

Citation

Detail

段落导航
相关文章

/