在处理参数结构动力响应问题时,现有的分析方法大多局限于一阶分析方法,若参数的不确定量稍大,如油膜等参数,采用一阶分析方法分析可能会失效。本文在一阶摄动方法的基础上,推导了以二阶偏导计算为基础的二阶摄动分析方法,能够计算频域内结构的振动传递效率,并通过简单算例、水电机组竖向振动传导分析算例验证了方法的可行性,但二阶摄动法在水电机组振动分析时,特别是在固有频率处,存在误差放大的问题。本文明确了二阶摄动法在水电机组振动传导研究的适用性,即仅适用于非固有频率处的大扰动项分析,为进一步的研究复杂结构的传导路径提供基础。
Abstract
At present,most analysis methods for solving the problem of parameters’structural dynamical response are limited to the first-order.If the uncertainty of one parameter (such as oil seal,etc.) is slightly large,then the first-order analysis method does work.This paper derived a second-order perturbation analysis method with second-order partial derivative calculations on the basis of the first-order perturbation method.This method analyzed structural vibration transfer efficiency in the frequency domain.The method was validated through a simple example and a vertical vibration transfer analysis example.However,there was a big error,when using the second-order perturbation in the vibration analysis of hydroelectric units,especially in the natural frequency.This research provided a method to solving large disturbance parameters in hydropower station units' vibration analysis,but only for the non-natural frequencies.It also offers basis for further research on complicated structural transfer paths.
关键词
水电机组 /
二阶摄动 /
二阶偏导 /
传导路径
{{custom_keyword}} /
Key words
hydroelectric set /
second-order perturbation /
second-order partial derivative /
transfer path;
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]马震岳,董毓新.水电站机组及厂房振动的研究与治理[M].中国水利水电出版社.2004. 34-35
Z Y Ma, Y X Dong. Vibration and its Corrective Actions of Water Turbine Generator Set and Power House [M]. Beijing: China Water Power Press. 2004:34-35. (in Chinese)
[2]赵薇, 张义民, 周娜. 频域内振动传递路径系统的参数灵敏度[J]. 中国工程机械学报, 2015, 13(6):475-479.
W Zhao, Y M Zhang, N Zhou. Parametric sensitivity of vibration transfer path system in frequency domain [J]. Chinese Journal of Construction Machinery. 2015, 13(6):475-479. (in Chinese)
[3]陶永霞, 职保平, 刘子祺,等. 复杂扰动条件下水电站振动传递功率流分析[J]. 振动与冲击, 2017, 36(6):102-107.
Y X Tao, B P Zhi, Z Q Liu,Z Y Ma. Power flow transmissibility analysis considering the complex disturbance in hydropower stations [J]. Vibration and shock. 2017, 36(6):102-107.
[4]Qiu Z, Ma L, Wang X. Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty [J]. Journal of Sound & Vibration, 2009, 319(1–2):531-540.
[5]W Gao,C M Song,F Tin-Loi. Probabilistic Interval Response and Reliability Analysis of Structures with a Mixture of Random and Interval Properties [J]. Computer Modeling in Engineering & Sciences, 2009, 46(2), 151-189.
[6]Qiu Z, Wang X. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach [J]. International Journal of Solids & Structures, 2003, 40(20):5423-5439.
[7]Madani M, Fathizadeh M, Khan Y, et al. On the coupling of the homotopy perturbation method and Laplace transformation [J]. Mathematical & Computer Modeling, 2011, 53(9):1937-1945.
[8]李琦, 邱志平, 张旭东. 基于二阶摄动法求解区间参数结构动力响应[J]. 力学学报, 2015, 47(1):147-153.
Q Li, Z P Qiu, X D Zhang. Second-Order Parameter Perturbation Method for Dynamic Structures With Interval Parameters [J]. Chinese Journal of Theoretical and Applied Mechanics. 2015, 47(1):147-153. (in Chinese)
[9]Chen S H, Wu J. Interval optimization of dynamic response for structures with interval parameters [J]. Computers & Structures, 2004, 82(1):1-11.
[10]李杰. 随机结构系统. 北京: 科学出版社,1996
Li Jie. Stochastic Structural System. Beijing: Science Press, 1996 (in Chinese)
[11] W K Liu, T Belytschko. A computational method for the determination of the probabilistic distribution of the dynamic response of structures [J]. A Mani-Computer-aided Engineering, ASME PVP, 1985, 98(5): 243-248
[12]B P Zhi, Z Y Ma. Disturbance Analysis of Hydropower Station Vertical Vibration Dynamic Characteristics: The Effect of Dual Disturbances [J]. Structural Engineering and Mechanics. 2015, 53(2): 297-309.
[13]B P Zhi, Z Y Ma. Path Transmissibility Analysis Considering Two Types of Correlations in Hydropower Stations [J]. Journal of Applied Mathematics, 2013, 802546
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}