基于全相位滤波的密集成分的频率估计

杨俊东1,余江1,黄铭1,张果2,葛孚华1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (4) : 77-82.

PDF(1067 KB)
PDF(1067 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (4) : 77-82.
论文

基于全相位滤波的密集成分的频率估计

  • 杨俊东1,余江1,黄铭1,张果2,葛孚华1
作者信息 +

Frequency estimation for densely intervaled components based on all-phase filtering

  • YANG Jundong1,YU Jiang1,HUANG Ming1,ZHANG Guo2,GE Fuhua1
Author information +
文章历史 +

摘要

为提高密集谱成分的频率估计精度,本文提出基于全相位滤波的频谱校正法。首先,构建了可以反映以谱峰为中心的3根谱线的相位线性偏离因子,用以辨识所关注的频点是否存在密集谱分布;其次,将所关注的频点参数代入全相位窄带滤波器的解析公式,生成滤波器系数;最后,用现有的谱校正法(如比值法)对全相位滤波输出的有效样本段进行频率估计,即可估测出密集频率成分。实验证明,本文方法可以大大地去除谱间干扰误差,相比于现有的频谱校正法,提升了密集频率成分的估计精度,因而具有较广泛的应用前景。

Abstract

To enhance the frequency estimation accuracy for densely-intervaled components,this paper proposed an all-phase filtering based spectrum correction method.Firstly,a factor reflecting the phase linearity deviation of 3 spectral lines centered with the spectral peak was constructed,which can identify whether dense components exist around the frequency position of interest.Secondly,substituting this frequency component into the analytic formula of all-phase narrow-band filter yields all the filter tap coefficients.Lastly,the estimation results were acquired by implementing an existing spectrum correction operation (such as the ratio correction) on the effective sample segment of the all-phase filter’s output.Numerical results show that,the proposed estimator can greatly remove the inter-spectra interference errors and thus achieves a higher accuracy than the existing spectrum method,which possesses a vast potential of applied prospects.

关键词

频率估计 / 全相位滤波 / 谱间干扰 / 解析公式

Key words

Frequency estimation / All-phase filtering / inter-spectra interference / analytic formula

引用本文

导出引用
杨俊东1,余江1,黄铭1,张果2,葛孚华1. 基于全相位滤波的密集成分的频率估计[J]. 振动与冲击, 2019, 38(4): 77-82
YANG Jundong1,YU Jiang1,HUANG Ming1,ZHANG Guo2,GE Fuhua1. Frequency estimation for densely intervaled components based on all-phase filtering[J]. Journal of Vibration and Shock, 2019, 38(4): 77-82

参考文献

[1] 青海银, 张援农, 周晨,等. 基于MST雷达垂直风速的大气温度剖面反演 [J]. 物理学报, 2014, 63(9): 094301-1-7.
Qing Hai-Yin, Zhang Yuan-Nong, Zhou Chen, et al. Atmospheric temperature profiles estimated by the vertical wind speed observed by MST radar [J]. Acta Physica Sinica , 2014, 63(9): 094301-1-7.
[2] ZHANG Y D, AMIN M G, HIMED B. Joint DOD/DOA estimation in MIMO radar exploiting time-frequency signal representations [J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012(1): 1-10.
[3] ZHENYANG D, X STEVE Y, TIEGEN L, et al. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals [J]. Optics Express, 2012, 20(27): 28319-28329.
[4] JONES R H. Identification and autoregressive spectrum estimation [J]. IEEE Transactions on Automatic Control, 1974, 19(6): 894-898.
[5] SCHMIDT R O. Multiple emitter location and signal parameter estimation [J]. IEEE Trans Antennas & Propagation, 1986, 34(3): 276-280.
[6] ROY R, KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques [J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(7): 984-995.
[7] QUINN B G. Estimation of frequency, amplitude, and phase from the DFT of a time series [J]. Signal Processing, IEEE Transactions on, 1997, 45(3): 814-817.
[8] 丁康, 江利旗. 离散频谱的能量重心校正法 [J]. 振动工程学报, 2001, 14(3): 354-358.
Ding Kang, Jiang Li-qi. Energy Centrobaric Correction Method for Discrete Spectrum [J]. Journal of Vibration Engineering, 2001, 14(3): 354-358.
[9] MACLEOD M D. Fast nearly ML estimation of the parameters of real or complex single tones or resolved multiple tones [J]. Signal Processing, IEEE Transactions on, 1998, 46(1): 141-148.
[10] CANDAN C. Analysis and Further  Improvement of Fine Resolution Frequency Estimation Method From Three DFT Samples [J]. IEEE Signal Processing Letters, 2013, 20(9): 913-916.
[11] ZHANG F, GENG Z, YUAN W. The algorithm of interpolating windowed FFT for harmonic analysis of electric power system [J]. Power Delivery, IEEE Transactions on, 2001, 16(2): 160-164.
[12] 朱小勇, 丁康. 离散频谱校正方法的综合比较 [J]. 信号处理, 2001, 17(1): 91-97.
ZHU Xiao-yong, Ding Kang. The Synthetical Comparison of Correcting Methods on Discrete Spectrum [J]. Signal Processing, 2001, 17(1): 91-97.
[13] ABOUTANIOS E, MULGREW B. Iterative frequency estimation by interpolation on Fourier coefficients [J]. Signal Processing, IEEE Transactions on, 2005, 53(4): 1237-1242.
[14] TSUI J, CHENG C-H. Digital Techniques for Wideband Receivers (3rd Edition) [M]. Stevenage: Institution of Engineering and Technology, 2015.
[15] 黄翔东, 王兆华. 全相位数字谱分析方法 [M]. 北京: 科学出版社, 2017.
Huang Xiang-dong, Wang Zhao-hua. ALL-Phase Digital Spectral Analysis Method [M]. Beijing: Science Press,2017.
[16] XIANGDONG HUANG, JINGHUI CHU, WEI LU, et al. Simplified method of designing FIR filter with controllable center frequency [J]. Transactions of Tianjin University, 2010, 16(4): 262-266.
[17] XIANGDONG HUANG, SENXUE JING, ZHAOHUA WANG, et al. Closed-Form FIR Filter Design Based on Convolution Window Spectrum Interpolation [J]. IEEE Transactions on Signal Processing, 2016, 64(5): 1173-1186.
[18] 黄翔东, 韩溢文, 闫子阳, 等. 基于全相位滤波的互素谱分析的高效设计 [J]. 系统工程与电子技术, 2017, 39(1): 23-33.
HUANG Xiang-dong, HAN Yi-wen, YAN Zi-yang, et al. Efficient design of co-prime spectral analysis based on all-phase filtering [J]. Systems Engineering and Electronics,2017, 39(1): 23-33.
[19] XIANGDONG HUANG, YUEDONG WANG, ZIYANG YAN, et al. Closed-Form FIR Filter Design with Accurately Controllable Cut-Off Frequency [J]. Circuits, Systems, and Signal Processing, 2017, 36(2): 721-741.
[20] 王兆华, 黄翔东. 数字信号全相位谱分析与滤波技术 [M]. 北京: 电子工业出版社, 2009.
Wang Zhao-hua, Huang Xiang-dong. ALL-Phase Spectrum Analysis and Filtering Techniques for Digital Signals [M].   Beijing: Publishing House of Electronics Industry, 2009.

PDF(1067 KB)

Accesses

Citation

Detail

段落导航
相关文章

/