本文实验研究了大雷诺数、小质量比、近自由水面的弹性支撑刚性圆柱流激振动. 利用了低湍流度的循环水槽施加不同来流条件,采用虚拟弹簧阻尼系统(Vck)测量圆柱的流激振动幅值和频率。研究结果表明:约化速度由低到高,近自由表面处采用被动湍流控制技术(PTC)的圆柱流激振动可分为三个典型区域,分别为涡激振动区、涡激振动向驰振转化区和驰振区。涡激振动发生时,自由表面效应对光滑圆柱涡激振动以及PTC圆柱的流激振动影响不明显;驰振发生时,较大的约化速度对应较高弗洛德数,自由表面对弹性支撑刚性PTC圆柱的流激振动影响逐渐显著。研究成果可为海流能发电装置VIVACE提供必要的理论指导和技术支撑。
Abstract
In this paper,a series of experimental studies on FIV of single cylinder with low mass ratio and large Reynolds number were carried out in a low turbulence free surface water channel.Cylinder response was measured by a virtual spring-damping system (Vck).It can be found that a single cylinder near free surface with Passive Turbulence Control (PTC) generally behaves three typical response types,i.e.vortex-induced vibration (VIV),transition region and galloping.The influence of the free surface is not obvious when the cylinder responds as VIV.In addition,significant effect of the free surface can be observed when the cylinder vibrates as galloping.The experimental results can provide strong support for the application of VIVACE (VIV for Aquatic Clean Energy Converter) which is one efficient device for extracting clean and renewable hydrokinetic energy from ocean flow.
关键词
海流能 /
VIVACE /
被动湍流控制(PTC) /
圆柱 /
自由表面
{{custom_keyword}} /
Key words
Ocean flow energy;VIVACE;Passive Turbulence Control (PTC) /
Circular cylinder /
Free surface;
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]. 张理, 李志川. 潮流能开发现状、发展趋势及面临的力学问题. 力学学报,2016, 48(5): 1019-1032
Zhang Li,Li Zhichuan. Development status, trend and the problems of mechanics of tidal current energy. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1019-1032
[2]. N. Khan, A. Kalair, N. Abas, A. Haider, Review of ocean tidal, wave and thermal energy technologies, Renewable and Sustainable Energy Reviews 72 (2017) 590-604.
[3]. Bernitsas, M.M., Raghavan, K., Ben-Simon, Y., Garcia, E.M.H. VIVACE (vortex induced vibration aquatic clean energy): A new concept in generation of clean and renewable energy from fluid flow. Journal of Offshore Mechanics and Arctic Engineering ASME Transactions, 2008, 130(4): 041101.
[4]. Raghavan, K., Bernitsas, M. M. Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports. Ocean Engineering 2011; 38(5): 719-731.
[5]. Chang, C.C., Kumar, R.A., Bernitsas, M.M.VIV and galloping of single circular cylinder with surface roughness at 3.0×104≤Re≤1.2×105.Ocean Engineering 2011;38(16):1713-1732.
[6]. Lin Ding, Li Zhang, Michael M. Bernitsas, Che-Chun Chang. Numerical simulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control. Renewable Energy 85 (2016) 1246-1259.
[7]. Sun, H., Kim, E. S., Nowakowski, G., Mauer, E., Bernitsas, M. M. (2016). Effect of mass-ratio, damping, stiffness on optimal hydrokinetic energy conversion of a single, rough cylinder in flow induced motions .Renewable Energy, 99, 936-959.
[8]. Govardhan, R., Williamson, C.H.K., 2006. Defining the ‘modified Griffin plot’ in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping. Journal of Fluid Mechanics, 561, 147-180.
[9]. P. Reichl, K. Hourigan, M. C. Thompson. Flow past a cylinder close to a free surface. Journal of Fluid Mechanics (2005), 533, 269-296.
[10]. S. Kocabiyik, C.Bozkaya. Streamwise oscillations of a cylinder beneath a free surface: Free surface effects on fluid forces. Journal of Fluids and Structures 59(2015)394-405.
[11]. M.-H. Chung.Two-degree-of-freedom vortex induced vibration of low-mass horizontal circular cylinder near a free surface at low Reynolds number. International Journal of Heat and Fluid Flow 57 (2016) 58-78.
[12]. Williamson, C.H.K., Govardhan,R. A brief review of recent results in vortex-induced vibrations. Journal of Wind Engineering and Industrial Aerodynamics 96(2008)713-735.
[13]. Aronsen, K.H. An experimental investigation of inline and combined in-line and cross-flow vortex induced vibrations. [PhD Thesis]. Trondheim: Norwegian University of Science and Technology, 2007.
[14]. Leijian Song , Shixiao Fu, Jing Cao, Leixin Ma, Jianqiao Wu.2016,An investigation into the hydrodynamics of a flexible riser undergoing vortex-induced vibration. Journal of Fluids and Structures 63,325-350.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}