基于扩张状态观测器的轧机振动抑振器研究

王鑫鑫 闫晓强

振动与冲击 ›› 2019, Vol. 38 ›› Issue (5) : 1-6.

PDF(952 KB)
PDF(952 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (5) : 1-6.
论文

基于扩张状态观测器的轧机振动抑振器研究

  • 王鑫鑫   闫晓强
作者信息 +

Vibration suppressor of rolling mills based on extended state observer

  • WANG Xinxin   YAN Xiaoqiang
Author information +
文章历史 +

摘要

轧机振动是一种机电液界耦合的“幽灵”式振动,而目前现场针对轧机振动的抑振手段是以调节轧机参数为主的抑振方法,鉴于此,本文提出一种轧机振动抑振方法。首先利用扩张状态观测器估计轧机振动外扰和系统不确定参数并将其视为总和扰动;然后将总和扰动转化为伺服阀的等效输入,最后将等效输入实时地补偿到伺服阀控制信号中以达到抑振目的。此抑振器可以作为模块化嵌入到原控制系统中,仿真结果表明,该抑振器针对三种经常出现的轧机振动现象均有良好的抑振效果。

Abstract

Rolling mill vibration is a mechanical-electrical-hydraulic coupled “phantom” one. At present, the main vibration suppression method for rolling mill vibration is to adjust its parameters. Here, a new vibration suppression method was proposed. Firstly, rolling mill external disturbances and the system’s uncertain parameters were estimated with an extended state observer and taken as the total disturbances. Then, the total disturbances were converted into the equivalent servo valve input. Finally, the equivalent input was compensated in real time to control signals of the servo valve to suppress rolling mill vibration. This vibration suppressor was taken as a module to be embedded into the original control system. The simulation results showed that the proposed vibration suppressor has a good vibration -suppressing effect on three often occurring rolling mill vibration phenomena.

关键词

轧机振动 / 耦合振动 / 扩张状态观测器 / 抑振器

Key words

vibration in rolling mill / coupling vibration / extended states observer / vibration suppressor

引用本文

导出引用
王鑫鑫 闫晓强. 基于扩张状态观测器的轧机振动抑振器研究[J]. 振动与冲击, 2019, 38(5): 1-6
WANG Xinxin YAN Xiaoqiang. Vibration suppressor of rolling mills based on extended state observer[J]. Journal of Vibration and Shock, 2019, 38(5): 1-6

参考文献

 [1] Paton D L, Critchley S. Tandem Mill Vibration: Its Cause and Control [C]. Chicago, IL, USA: 1985.
 [2] Nessler G L, Cory Jr. J F. Cause and solution of fifth octave backup roll chatter on 4-h cold mills and temper mills[J]. Iron and Steel Engineer. 1989, 66(12): 33-37.
 [3] 闫晓强,张䶮. 可逆式冷轧机振动机理研究[J]. 振动与冲击. 2010(09): 231-234.
Xiaoqiang Y, Yan Z. Research on vibration reason of reversing cold mill[J]. journal of vibration and shock. 2010, (09): 231-234.
 [4] Fujita N, Kimura Y, Kobayashi K, et al. Dynamic control of lubrication characteristics in high speed tandem cold rolling[J]. Journal of Materials Processing Technology. 2016, 229: 407-416.
 [5] Kimura Y, Fujita N, Matsubara Y, et al. High-speed rolling by hybrid-lubrication system in tandem cold rolling mills[J]. Journal of Materials Processing Technology. 2015, 216: 357-368.
 [6] 范小彬,臧勇,吴迪平,等. CSP热连轧机振动问题[J]. 机械工程学报. 2007, 43(8): 198-201.
Xiaobin F, Yong Z, Diping W, et al. vibration problems of CSP hot tandem mill[J]. chinese journal of mechanical engineering. 2007, 43: 198-201.
 [7] Heidari A, Forouzan M R. Optimization of cold rolling process parameters in order to increasing rolling speed limited by chatter vibrations[J]. Journal of Advanced Research. 2013, 4(1): 27-34.
 [8] Schlacher K, Fuchshumer S, Grabmair G, et al. Active vibration rejection in steel rolling mills[C]. Prague, Czech republic: 2005.
 [9] Yang X, Tong C. Coupling Dynamic Model and Control of Chatter in Cold Rolling[J]. Journal of Dynamic Systems, Measurement, and Control. 2012, 134(4): 41001.
[10] 许宝玉. 铝板带热连轧机随机动力学特性及其最优控制策略研究[D]. 中南大学, 2014.
Baoyu X. The Stochastic Dynamics and Optimal Control Strategy[D].: Central South University, 2014.
[11] 凌启辉,赵前程,王宪,等. 热连轧机机液耦合动力学系统控制参数优化[J]. 振动与冲击. 2017(16): 73-78.
Qihui L, Qiancheng Z, Xian W, et al. control parameter optimization of a hydraulic-mechanical coupling system of hor strip tandem mill[J]. journal of vibration and shock. 2017, (16): 73-78.
[12] 易孟林,曹树平,刘银水. 电液控制技术[M]. 武汉: 华中科技大学出版社, 2010.
Menglin Y, Shuping C, Yinshui L. Electro-hydraulic Control Technology[M]. ed. Wuhan, China: Huazhong University of Science and Technology Press, 2010.
[13] 韩京清. 一类不确定对象的扩张状态观测器[J]. 控制与决策. 1995(01): 85-88.
Jingqing H. The "Extended State Observer" of a Class of Uncertain Systems[J]. control and decision. 1995, (01): 85-88.
[14] Han J. From PID to Active Disturbance Rejection Control[J]. IEEE Transactions on Industrial Electronics. 2009, 56(3): 900-906.
[15] Capabilities of Extended State Observer for Estimating Uncertainties[J]. 2009.
[16] Madoski R, Herman P. Survey on methods of increasing the efficiency of extended state disturbance observers[J]. ISA Transactions. 2015, 56: 18-27.
[17] Talole S E, Kolhe J P, Phadke S B. Extended-State-Observer-Based Control of Flexible-Joint System With Experimental Validation[J]. IEEE Transactions on Industrial Electronics. 2010, 57(4): 1411-1419.
[18] Su Y X, Zheng C H, Duan B Y. Automatic Disturbances Rejection Controller for Precise Motion Control of Permanent-Magnet Synchronous Motors[J]. IEEE Transactions on Industrial Electronics. 2005, 52(3): 814-823.
[19] Wang H P, Zheng D, Tian Y. High pressure common rail injection system modeling and control[J]. ISA Transactions. 2016, 63: 265-273.
[20] Li S, Li J, Mo Y. Piezoelectric Multimode Vibration Control for Stiffened Plate Using ADRC-Based Acceleration Compensation[J]. IEEE Transactions on Industrial Electronics. 2014, 61(12): 6892-6902.
[21] Li S, Yang J, Chen W, et al. Generalized extended state observer based control for systems with mismatched uncertainties[J]. IEEE Transactions on Industrial Electronics. 2012, 59(12): 4792-4802.
[22] Li S, Yang J, Chen W, et al. disturbance observer-based control: methods and applications[M]. CRC press, 2014.
 

PDF(952 KB)

462

Accesses

0

Citation

Detail

段落导航
相关文章

/