[1] Paton D L, Critchley S. Tandem Mill Vibration: Its Cause and Control [C]. Chicago, IL, USA: 1985.
[2] Nessler G L, Cory Jr. J F. Cause and solution of fifth octave backup roll chatter on 4-h cold mills and temper mills[J]. Iron and Steel Engineer. 1989, 66(12): 33-37.
[3] 闫晓强,张䶮. 可逆式冷轧机振动机理研究[J]. 振动与冲击. 2010(09): 231-234.
Xiaoqiang Y, Yan Z. Research on vibration reason of reversing cold mill[J]. journal of vibration and shock. 2010, (09): 231-234.
[4] Fujita N, Kimura Y, Kobayashi K, et al. Dynamic control of lubrication characteristics in high speed tandem cold rolling[J]. Journal of Materials Processing Technology. 2016, 229: 407-416.
[5] Kimura Y, Fujita N, Matsubara Y, et al. High-speed rolling by hybrid-lubrication system in tandem cold rolling mills[J]. Journal of Materials Processing Technology. 2015, 216: 357-368.
[6] 范小彬,臧勇,吴迪平,等. CSP热连轧机振动问题[J]. 机械工程学报. 2007, 43(8): 198-201.
Xiaobin F, Yong Z, Diping W, et al. vibration problems of CSP hot tandem mill[J]. chinese journal of mechanical engineering. 2007, 43: 198-201.
[7] Heidari A, Forouzan M R. Optimization of cold rolling process parameters in order to increasing rolling speed limited by chatter vibrations[J]. Journal of Advanced Research. 2013, 4(1): 27-34.
[8] Schlacher K, Fuchshumer S, Grabmair G, et al. Active vibration rejection in steel rolling mills[C]. Prague, Czech republic: 2005.
[9] Yang X, Tong C. Coupling Dynamic Model and Control of Chatter in Cold Rolling[J]. Journal of Dynamic Systems, Measurement, and Control. 2012, 134(4): 41001.
[10] 许宝玉. 铝板带热连轧机随机动力学特性及其最优控制策略研究[D]. 中南大学, 2014.
Baoyu X. The Stochastic Dynamics and Optimal Control Strategy[D].: Central South University, 2014.
[11] 凌启辉,赵前程,王宪,等. 热连轧机机液耦合动力学系统控制参数优化[J]. 振动与冲击. 2017(16): 73-78.
Qihui L, Qiancheng Z, Xian W, et al. control parameter optimization of a hydraulic-mechanical coupling system of hor strip tandem mill[J]. journal of vibration and shock. 2017, (16): 73-78.
[12] 易孟林,曹树平,刘银水. 电液控制技术[M]. 武汉: 华中科技大学出版社, 2010.
Menglin Y, Shuping C, Yinshui L. Electro-hydraulic Control Technology[M]. ed. Wuhan, China: Huazhong University of Science and Technology Press, 2010.
[13] 韩京清. 一类不确定对象的扩张状态观测器[J]. 控制与决策. 1995(01): 85-88.
Jingqing H. The "Extended State Observer" of a Class of Uncertain Systems[J]. control and decision. 1995, (01): 85-88.
[14] Han J. From PID to Active Disturbance Rejection Control[J]. IEEE Transactions on Industrial Electronics. 2009, 56(3): 900-906.
[15] Capabilities of Extended State Observer for Estimating Uncertainties[J]. 2009.
[16] Madoski R, Herman P. Survey on methods of increasing the efficiency of extended state disturbance observers[J]. ISA Transactions. 2015, 56: 18-27.
[17] Talole S E, Kolhe J P, Phadke S B. Extended-State-Observer-Based Control of Flexible-Joint System With Experimental Validation[J]. IEEE Transactions on Industrial Electronics. 2010, 57(4): 1411-1419.
[18] Su Y X, Zheng C H, Duan B Y. Automatic Disturbances Rejection Controller for Precise Motion Control of Permanent-Magnet Synchronous Motors[J]. IEEE Transactions on Industrial Electronics. 2005, 52(3): 814-823.
[19] Wang H P, Zheng D, Tian Y. High pressure common rail injection system modeling and control[J]. ISA Transactions. 2016, 63: 265-273.
[20] Li S, Li J, Mo Y. Piezoelectric Multimode Vibration Control for Stiffened Plate Using ADRC-Based Acceleration Compensation[J]. IEEE Transactions on Industrial Electronics. 2014, 61(12): 6892-6902.
[21] Li S, Yang J, Chen W, et al. Generalized extended state observer based control for systems with mismatched uncertainties[J]. IEEE Transactions on Industrial Electronics. 2012, 59(12): 4792-4802.
[22] Li S, Yang J, Chen W, et al. disturbance observer-based control: methods and applications[M]. CRC press, 2014.