冲击载荷下周期性层状管结构中应力波衰减特性研究

李应刚1, 2,周雷2,朱凌2,郭开岭2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (5) : 124-127.

PDF(1380 KB)
PDF(1380 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (5) : 124-127.
论文

冲击载荷下周期性层状管结构中应力波衰减特性研究

  • 李应刚1, 2,周雷2,朱凌2,郭开岭2
作者信息 +

Stress wave attenuation characteristics of periodic layered tube structures under impact loadings

  • LI Yinggang1, 2, ZHOU Lei2, ZHU Ling2, GUO Kailing2
Author information +
文章历史 +

摘要

本文利用分离式霍普金森压杆试验装置(SHPB)开展了周期性层状管结构的动态冲击试验,结合有限元数值仿真研究了冲击载荷作用下周期性层状管结构中瞬态应力波传播与衰减特性。基于固体晶格能带理论,研究了周期性层状管结构的带隙特性,阐明了能带结构与应力波频谱衰减区域的对应关系,分析了层状管的材料和结构参数对带隙的影响。研究结果表明,周期性层状管结构具有良好的冲击应力波衰减特性和抗冲击性能,其应力波衰减特性主要由其带隙引起,层状管的材料和结构参数对带隙的频率范围和宽度具有有效的调节作用。本文的研究工作可以为工程抗爆抗冲击提供新思路。

Abstract

Here, dynamic behavior, stress wave propagation and attenuation characteristics of periodic layered tubes under impact loadings were investigated with the split Hopkinson pressure bar (SHPB) device combining with the finite element numerical simulation. Based on the solid lattice energy band theory, periodic layered tube structures’ band gap characteristics were studied to clarify the relation between energy band structure and stress wave frequency spectrum’s attenuation region and analyze the effects of layered tubes’ material and structural parameters on band gap. Results showed that the periodic layered tube structures possess good impact stress wave attenuation characteristics and anti-impact performance; their impact stress wave attenuation characteristics are mainly caused by their band gap ones; layered tubes’ material and structural parameters can effectively regulate the frequency range and width of band gap. The study results provided a new idea for anti-blast and anti-impact engineering.

关键词

周期层状管结构 / 应力波衰减 / 抗冲击 / 带隙 / SHPB

Key words

Periodic layered tubes / Stress wave attenuation / Impact resistance / Band gaps / SHPB

引用本文

导出引用
李应刚1, 2,周雷2,朱凌2,郭开岭2. 冲击载荷下周期性层状管结构中应力波衰减特性研究[J]. 振动与冲击, 2019, 38(5): 124-127
LI Yinggang1, 2, ZHOU Lei2, ZHU Ling2, GUO Kailing2. Stress wave attenuation characteristics of periodic layered tube structures under impact loadings[J]. Journal of Vibration and Shock, 2019, 38(5): 124-127

参考文献

[1] Lu G, Yu T X. Energy absorption of structures and materials[M]. Elsevier, 2003.
[2] Zhang X, Cheng G, You Z, et al. Energy absorption of axially compressed thin-walled square tubes with patterns[J]. Thin-Walled Structures, 2007, 45(9): 737-746.
[3] Zhang X, Cheng G, Zhang H. Theoretical prediction and numerical simulation of multi-cell square thin-walled structures[J]. Thin-Walled Structures, 2006, 44(11): 1185-1191.
[4] Zhang X, Zhang H, Wen Z. Axial crushing of tapered circular tubes with graded thickness[J]. International Journal of Mechanical Sciences, 2015, 92: 12-23.
[5] Zhang H, Zhang X. Crashworthiness performance of conical tubes with nonlinear thickness distribution[J]. Thin-Walled Structures, 2016, 99: 35-44.
[6] 罗昌杰, 刘荣强, 邓宗全, 等. 泡沫铝填充薄壁金属管塑性变形缓冲器吸能特性的试验研究[J]. 振动与冲击, 2009, 28(10): 26-30.
LUO Changjie, LIU Rongqiang, DENG Zongquan, et al. Experimental studies on a plastic deformation energy absorber filled with aluminum foam in a thin-walled metal tube[J].Journal of Vibration and Shock, 2009, 28(10): 26-30.
[7] 袁潘, 杨智春. 复合材料/铝复合管轴向准静态及冲击压溃的吸能特性[J]. 振动与冲击, 2010, 29(8): 209-213.
Yuan Pan, Yang Zhichun. Numerical study on the energy absorption of aluminum-composite hybrid tubes under axial quasi-static and impact crushing[J]. Journal of Vibration and Shock, 2010, 29(8): 209-213.
[8] 程涛, 向宇, 李健, 等. 泡沫铝填充多棱管的吸能分析[J]. 振动与冲击, 2011, 30(9): 237-242.
Cheng Tao, Xiang Yu, Li Jian, et al. The energy absorption analysis of foamed aluminum-filled prisms[J]. Journal of Vibration and Shock, 2011, 30(9): 237-242.
[9] Yin H, Wen G, Liu Z, et al. Crashworthiness optimization design for foam-filled multi-cell thin-walled structures[J]. Thin-Walled Structures, 2014, 75: 8-17.
[10] Siromani D, Awerbuch J, Tan T M. Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression[J]. Composites Part B: Engineering, 2014, 64: 50-58.
[11] 陈亚枫, 白中浩. 泡沫填充多边形单锥管与双锥管斜向加载下耐撞性分析[J]. 振动与冲击, 2017, 36(6): 18-26.
Chen Yafeng, Bai Zhonghao. Crashworthiness analysis of foam-filled single and bitubal polygonal tapered thin-walled tubes under oblique impact loading[J]. Journal of Vibration and Shock, 2017, 36(6): 18-26.
[12] 高强, 王良模, 王源隆, 等. 椭圆形泡沫填充薄壁管斜向冲击吸能特性仿真研究[J]. 振动与冲击, 2017, 36(2): 201-206.
GAO Qiang,WANG Liang-mo,WANG Yuan-long, et al. Energy-absorbing characteristics of foam-filled oval tube under oblique impact[J]. Journal of Vibration and Shock, 2017, 36(2): 201-206.
[13] 温熙森. 声子晶体[M]. 国防工业出版社, 2009.
WEN Xisen. Phononic crystals[M]. National Defense Industry Press, 2009.
[14] Li Y, Chen T, Wang X, et al. Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot[J]. Physica B: Condensed Matter, 2015, 456: 261-266.

PDF(1380 KB)

424

Accesses

0

Citation

Detail

段落导航
相关文章

/