疏水硅胶颗粒的吸能机理研究

赵鹏1,余慕春2,陈前1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (5) : 128-134.

PDF(1253 KB)
PDF(1253 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (5) : 128-134.
论文

疏水硅胶颗粒的吸能机理研究

  • 赵鹏1,余慕春2,陈前1
作者信息 +

Energy absorption mechanism of hydrophobic silica gel particles

  • ZHAO Peng1 YU Muchun2 CHEN Qian1
Author information +
文章历史 +

摘要

疏水硅胶是一种由水和布满微孔的疏水硅胶颗粒组成的缓冲介质,将疏水硅胶密封在可压缩的液压缸内即可形成疏水硅胶缓冲器。在冲击过程中利用水分子侵入和逸出疏水微孔,可以实现能量的存储、转化和消耗。基于Laplace-Washburn方程和接触角迟滞模型,研究水分子侵入和逸出疏水微孔的过程,建立疏水硅胶的力学模型;采用准静态试验验证疏水硅胶的力学模型,并根据实测的力-位移曲线计算疏水硅胶的耗能效率。结果表明:理论与试验结果具较好的一致性;疏水硅胶在加载与卸载过程中呈现较大的迟滞现象,是一种理想的吸能材料;若设计得当,疏水硅胶具有优异的缓冲性能。

Abstract

Hydrophobic silica gel is a shock energy absorption buffer medium consisting of water and hydrophobic silica gel particles covered with micro-pores. It is sealed in a compressible hydraulic cylinder to form a hydrophobic silica gel buffer. During impact processes, water molecules invade and escape from hydrophobic micro-pores to realize energy storage, conversion and dissipation. Based on Laplace-Washburn equation and the contact angle hysteresis model, the process of water molecules invading and escaping from hydrophobic micro-pores was studied to establish hydrophobic silica gel’s mechanical model. Quasi-static tests were used to verify this mechanical model, and according to the actually measured force-displacement curve, the energy-dissipating efficiency of hydrophobic silica gel was calculated. The results showed that the theoretical results are better consistent to test ones; hydrophobic silica gel reveals a larger hysteretic phenomenon in loading and unloading processes, it is an ideal energy-absorbing material; if the design is appropriate, hydrophobic silica gel has excellent buffering performance.

关键词

疏水硅胶 / 迟滞 / 缓冲

Key words

hydrophobic silica particle / hysteresis / buffer

引用本文

导出引用
赵鹏1,余慕春2,陈前1. 疏水硅胶颗粒的吸能机理研究[J]. 振动与冲击, 2019, 38(5): 128-134
ZHAO Peng1 YU Muchun2 CHEN Qian1. Energy absorption mechanism of hydrophobic silica gel particles[J]. Journal of Vibration and Shock, 2019, 38(5): 128-134

参考文献

[1] 缪宏, 左敦稳, 汪洪峰,等. 冲击载荷对飞机起落架螺纹连接的影响[J]. 振动与冲击, 2010, 29(2):208-211.
MIAO Hong, ZUO Dun-wen, WANG Hong-feng, et al. Effect of impact load on threaded connection of an aircraft landing gear[J]. Journal of Vibration and Shock, 2010, 29(2):208-211.
[2] 雷正保, 钟志华, 李岳林. 汽车碰撞过程中乘员冲击响应的分析方法及应用[J]. 中国公路学报, 2001, 14(2):115-119.
LEI Zheng-bao, ZHOHG Zhi-hua, LI Yue-lin. Study of analysis procedure for impact response of occupant during vehicle crash and its application[J]. China Journal of Highway and Transport, 2001, 14(2):115-119.
[3] 张翠霞, 陈前, 滕汉东. 混合介质缓冲器的动力学特性及缓冲效果研究[J]. 振动与冲击, 2010, 29(1): 178-182.
ZHANG Cui-xia, CHEN Qian, TENG Han-dong. Study on Dynamic Properties of SALiM Shock Absorber[J]. Journal of Vibration and Shock, 2010, 29(1): 178-182.
[4] Soulard M, Patarin J, Eroshenko V, et al. Molecular spring or bumper: A new application for hydrophobic zeolitic materials[J]. Studies in Surface Science and Catalysis, 2004, 154(04):1830-1837.
[5] Ryzhikov A, Khay I, Nouali H, et al. High pressure intrusion–extrusion of electrolyte solutions in aluminosilicate FAU and *BEA-type zeolites[J]. Microporous and Mesoporous Materials, 2016, 221:1-7.
[6] 余慕春,陈前,高雪,等. 分子弹簧的隔振机理与力学性能研究[J]. 力学学报,2014, 46(4): 553-560
YU Mu-chun, CHEN Qian, GAO Xue, et al. Investigation of molecular spring on vibration isolation mechanism and mechanical properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 553-560
[7] Yu M, Chen Q, Gao X. Theoretical and experimental investigation of molecular spring isolator[J]. Microsystem Technologies, 2017, 23(2): 285–292.
[8] Fadeev A Y, Eroshenko V A. Study of Penetration of Water into Hydrophobized Porous Silicas[J]. Journal of Colloid & Interface Science, 1997, 187(2): 275-282.
[9] Suciu C V, Iwatsubo T, Yaguchi K, et al. Investigation of the Water Flow Into a Mesoporous Matrix From Hydrophobized Silica Gel[C]// ASME/JSME 2004 Pressure Vessels and Piping Conference. 2004: 211-221.
[10] Lefevre B, Saugey A, Barrat J L, et al. Intrusion and extrusion of water in hydrophobic mesopores[J]. Journal of Chemical Physics, 2004, 120(10): 4927-4938.
[11] Surani F B, Kong X, Panchal D B, et al. Energy absorption of a nanoporous system subjected to dynamic loadings[J]. Applied Physics Letters, 2005, 87(16): 163111-163111-3.
[12] 张福田. 分子界面化学基础[M]. 上海:上海科学技术文献出版社,2006
ZHANG Fu-tian. Fundamentals of Molecular Interface Chemistry[M]. Shanghai: Shanghai Scientific and Technological LiteraturePress, 2006(inChinese).
[13] Suciu C V, Iwatsubo T, Deki S. Investigation of a colloidal damper.[J]. Journal of Colloid & Interface Science, 2003, 259(1):62-80.
[14] Tzanis L, Trzpit M, Soulard M, et al. High pressure water intrusion investigation of pure silica 1D channel AFI, MTW and TON-type zeolites[J]. Microporous and Mesoporous Materials, 2011, 146(1): 119-126.
[15] Suciu C V, Iwatsubo T, Yaguchi K, et al. Novel and global approach of the complex and interconnected phenomena related to the contact line movement past a solid surface fromhydrophobized silica gel[J]. Journal of Colloid & Interface Science, 2005, 283(1): 196–214.
[16] 王晓东, 彭晓峰, 陆建峰,等. 粗糙表面接触角滞后现象分析[J]. 热科学与技术, 2003, 2(3): 230-234.
WANG Xiao-dong, PENG Xiao-feng, LU Jian-feng, et al. Analysis of contact angle hysteresis on rough surfaces[J]. Journal of Thermal Science & Technology, 2003, 2(3): 230-234.

PDF(1253 KB)

Accesses

Citation

Detail

段落导航
相关文章

/