共振钻井是一种新型的钻井提速技术,在钻井过程中,为了达到最优的破岩效果,需要使振动频率与不同状态下岩石的共振频率相匹配,因此研究岩石在井底围压及约束状态下的共振响应特性十分必要。该论文考虑到井底岩石的内部孔隙结构,以及岩石受到的井底围压作用,通过理论分析和数值模拟,获得不同约束下、不同孔隙分布下,岩石的位移响应振幅与冲击力频率的关系,进而得到岩石的共振频率。在本文模拟条件下,岩石的共振频率不随围压变化,但围压下的共振频率略高于自由状态下的共振频率;当岩石受到径向位移约束时,共振频率变大,且共振频率随岩石泊松比的增大而增大;当岩石内部孔隙沿冲击方向分布均匀时,其共振频率与孔隙度无关;当岩石内部孔隙沿冲击方向分布不均匀时,其共振频率与孔隙分布的不均匀程度相关,不均匀程度越高,共振频率越低。本文为分析岩石在井底状态下的共振响应特性提供了初步的理论基础,也为共振钻井技术的参数选择提供了依据。
Abstract
Resonance drilling is a new drilling speed raising technology. It is crucial to make impact frequency match rock’s resonant frequencies under different conditions to achieve the best rock-breaking efficiency in drilling process. Therefore, it is necessary to study resonant response of bottom hole rock under confining pressure and constraint conditions. Here, considering bottom hole rock internal pore structure and rock subjected to bottom hole confining pressure, through theoretical analysis and numerical simulation, relations between rock displacement response amplitude and impact frequency were obtained under different constraints and different pore distributions, and then rock’s resonant frequencies were acquired. It was shown that under simulation conditions here, rock’s resonant frequencies don’t change with variation of confining pressure, but they are slightly higher than those under the free condition; when bottom hole rock is constrained along radial displacement, its resonant frequencies become higher, and they increase with increase in rock’s Poisson’s ratio; when pore in rock distributes uniformly along impact direction, rock’s resonant frequencies are not related to porosity; when pore in rock distributes unevenly along impact direction, rock’s resonant frequencies are related to uneven degree of pore distribution, the higher the uneven degree, the lower the rock’s resonant frequencies. The study results provided a preliminary theoretical basis for analyzing rock’s resonance response characteristics under the condition of bottom hole, and provided a basis for choosing parameters of the resonance drilling technology.
关键词
共振钻井 /
共振频率 /
孔隙 /
围压 /
冲击力 /
位移响应振幅
{{custom_keyword}} /
Key words
Resonance drilling /
frequency /
pore /
confining pressure /
impact force /
displacement responding amplitude
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李思琪.谐振激励下钻头的冲击破岩机理研究[D].东北石油大学,2016.
LI Siqi. Research on Rock Breaking Mechanism of Drill Bit under Harmonic Vibration Excitation[D]. Northeast Petroleum University.2016.
[2] 李玮,纪照生,董智煜,等.基于重整化方法的冲击载荷下岩石振动分析[J].振动与冲击,2016,35 (16):49-54.
LI Wei,JI Zhaosheng,Dong Zhiyu,et al. Vibration analysis of rock under impact loads based on the renormalization method[J]. Journal of Vibration and Shock, 2016, 35(16):49-54.
[3]李玮,闫铁,张志超,等.高频振动钻具冲击下岩石响应机理及破岩试验分析[J].石油钻探技术,2013,41(6):25-28.
LI Wei,YAN Tie,ZHANG Zhichao,et al.Rock response mechanism and rock breaking test analysis for impact of high frequency vibration drilling tool[J]. Petroleum Drilling Techniques,2013,41( 6) : 25-28.
[4] 田家林,杨志,付传红,等. 高频微幅冲击振动作用下岩石破碎行为计算方法[J]. 吉林大学学报(地球科学版),2015, 45(06):1808-1816.
TIAN Jialin,YANG Zhi,FU Chuanhong,et al.Calculation Method of Rock-Breaking Behavior Under Impact Vibration of High Frequency and Amplitude[J]. Journal of Jilin University(Earth Science Edition) ,2015, 45(06):1808-1816.
[5] 许兴华.谐振冲击下钻头破岩机理研究[D].东北石油大学,2015.
XU Xinghua. Research on the Rock Breaking Mechanism of Resonance Impact Drilling[D]. Northeast Petroleum University,2015.
[6] 董学成,熊继有,王国华,等.振荡冲击器破岩机理数值模拟分析[J].西南石油大学学报(自然科学版),2014,36(06):160-167.
DONG Xuecheng,XIONG Jiyou,WANG Guohua,et al.Numerical Simulation Analysis of Rock Breaking Mechanism for Oscillation Impacter[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014,36 (06):160 -167.
[7] 常德玉,李根生,沈忠厚,等. 考虑三向地应力差时不同钻井条件下井底应力场研究[J].岩土力学, 2011, 32(05):1546-1552.
CHANG Deyu,LI Gensheng,SHEN Zhonghou,et al.Study of bottom-hole stress field with differential pressure of 3D in-situ stress under different drilling conditions[J]. Rock and Soil Mechanics, 2011, 32(05):1546-1552.
[8] Marian Wiercigroch, Vahid Vaziri, and Marcin Kapitaniak. RED: Revolutionary Drilling Technology for Hard Rock Formations[J]. SPE/IADC Drilling Conference and Exhibition, 2017.
[9] 李思琪,闫铁,王希军,等. 基于最小作用量原理的岩石微振动方程及分析[J]. 石油钻探技术,2014, 42(03):66-70.
LI Siqi,YAN Tie,WANG Xijun,et al.The Micro-Vibration Equation of Rock and Its Analysis Basing on the Principle of Least Action[J].Petroleum Drilling Techniques,2014, 42(03):66-70.
[10] 常德玉,李根生,沈忠厚,等.射流冲击载荷对井底岩石应力场的影响[J].中国石油大学学报(自然科学版),2011,35(02):74-79.
CHANG Deyu,LI Gensheng,SHEN Zhonghou,et al.Influence of water jet impact load on bottom-hole rocks tress field[J]. Journal of China University of Petroleum, 2011,35(02):74-79.
[11] 哈里斯.冲击与振动手册[M].刘树林.北京:中国石化出版社,2008:38
Harris.Shock and Vibration Handbook[M].LIU Shulin.Beijing: China Petrochemical Press,2008:38
[12] P. Kaitkay, S.T.Lei. Experimental study of rock cutting under external hydrostatic pressure[J]. Journal of Materials Processing Technology,2005,159(2): 206-213.
[13] Y. Melamed, A. Kiselev, M. Gelfgat, et al. Hydraulic hammer drilling technology: Developments and capabilities[J]. Journal of Energy Resources Technology,2000,122(1): 1-8.
[14] Romulo R. Aguiar, Hans I. Weber. Resonance Hammer Drilling: Study Of A Vibro-Impact System With Embarked Force[J].19th International Congress of Mechanical Engineering , 2007, November 5-9.
[15] 彭烨. 双级 PDC 钻头的理论及试验研究[D]. 中国石油大学,2008.
Peng Ye. The Theory and Testing Study of Two-stage PDC Bit [D]. China University of Petroleum (East China) ,2008.
[16] 周灿灿,刘堂晏,马在田,等. 应用球管模型评价岩石孔隙结构[J]. 石油学报,2006,(01):92-96.
ZHOU Cancan,LIU Tangyan,MA Zaitian,et al. Evaluation of pore structure using sphere-cylinder model [J]. ACTA PETROLEI SINICA,2006,(01):92-96.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}