以广义KYP引理为基础,提出并理论推导了一种改进的有限频域状态反馈H∞控制方法,控制所需参数更少。以某四分之一主动悬架系统为研究对象,以提高人体最为敏感的4~8Hz频域范围内的振动控制效果为目标,应用该方法为其设计了有限频域状态反馈H∞控制器。最后,通过随机激励仿真对控制器的控制效果进行了验证。仿真结果表明:与被动无控制状态相比,全频域和有限频域状态反馈H∞控制下车体加速度均方根值分别降低了28.16%和65.23%,对数据的频域分析表明,改进的有限频域状态反馈H∞控制器能够在满足控制约束的条件下更好的抑制4~8Hz频域范围内的振动。
Abstract
Based on the generalized KYP lemma, an improved state feedback H∞ control method within a finite frequency domain was proposed and theoretically derived to need less control parameters. Taking a certain 1/4 active suspension system as the study object and the optimal vibration control effect within the frequency range of 4—8 Hz being the most sensitive to human body as the objective, a state feedback H∞ controller within a finite frequency domain was designed using the proposed method. Finally, its control effect was verified through random excitation simulation. The results showed that compared with the passive and no control states, the root mean square value of the vehicle body acceleration under the state feedback H∞ control within the whole frequency domain and that within a finite frequency domain decrease by 28.16% and by 65.23%, respectively; through data analysis in frequency domain, the improved state feedback H∞ control method within a finite frequency domain can better suppress vibration within the frequency range of 4—8 Hz under the condition to satisfy control constraints.
关键词
有限频域;状态反馈;H&infin /
控制;线性矩阵不等式
{{custom_keyword}} /
Key words
finite frequency /
state feedback /
H&infin /
control /
Linear Matrix Inequality (LMI)
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈长征, 王刚, 于慎波. 含输入时滞的电动汽车悬架系统有限频域振动控制的研究[J]. 振动与冲击, 2016, 35(11): 130-137.
CHEN Changzheng, WANG Gang, YU Shenbo. Finite frequency domain vibration control for active suspension systems of electric vehicles with actuator input delay [J]. Journal of Vibration and Shock, 2016, 35(11): 130-137.
[2] SUN W, ZHAO Y, LI J, et al. Active suspension control with frequency band constrains and actuator input delay [J]. IEEE Transactions on Industrial Electronics, 2012, 59(1):530-537.
[3] HAMID N, BAHAR A. Robust adaptive H∞ controller based on GA-Wavelet-SVM for nonlinear vehicle suspension with time delay actuator [J]. Journal of Vibration and Control, 2016, 22(20): 4111-4120.
[4] LI H, LIU H, HILTON C, et al. Non-fragile H∞ control for half-vehicle active suspension systems with actuator uncertainties [J]. Journal of Vibration and Control, 2013, 19(4): 560-575.
[5] LI X, YANG G. Adaptive H∞ control for in finite frequency domain for uncertain systems[J]. Information Sciences, 2015, 414(1): 14-27.
[6] 陈长征, 王刚, 于慎波. 低频时变时滞悬架系统的动态输出反馈鲁棒H∞多目标控制[J]. 振动与冲击, 2015, 34(23): 153-160.
CHEN Changzheng, WANG Gang, YU Shenbo. Multi-objective control for suspension systems with low frequency,time-varying,and time delay via an output feedback-based robust H∞ controller [J]. Journal of Vibration and Shock,2015, 34(23): 153-160.
[7] WANG G, CHEN C, YU S. Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems [J]. Mechanical System and Signal Processing, 2017(91): 41-56.
[8] WANG R, JING H, YAN F, et al. Optimization and finite-frequency H∞ control of active suspension in in-wheel motor driven electric ground vehicles[J]. Journal of the Franklin Institute, 2015, 352(2): 468-484.
[9] SUN W, LI J, ZHAO Y, et al. Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic [J]. Mechatronics, 2011, 21(1): 250-260.
[10] 王刚,陈长征,于慎波. 含路面预瞄信息的车辆主动悬架有限频域多目标控制[J]. 农业机械学报, 2015, 46(12): 294-300.
WANG Gang, CHEN Changzheng, YU Shenbo. Finite frequency multi-objectives control of vehicle active suspension with road preview information[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 294-300.
[11] SUN W, GAO H, KAYNAK O. Finite frequency H control for vehicle active suspension systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(2): 416-422.
[12] 孙维超. 汽车悬架系统的主动振动控制[D]. h哈尔滨: 哈尔滨工业大学, 2013.
SUN Weichao. Active vibration control for vehicle suspension systems [D]. Harbin: Harbin Institute of technology, 2013.
[13] Iwasaki T, Hara D. Generalized KYP Lemma: unified frequency domain inequalities with design applications[J]. IEEE Transactions on Automatic Control, 2005, 50(1): 41-59.
[14] 王刚,陈长征,于慎波. 基于单步法的车辆主动悬架有限频域静态输出反馈控制[J]. 农业机械学报. 2017, 48 (02): 354-361.
WANG Gang, CHEN Changzheng, YU Shenbo. Single-step method based finite frequency static output feedback control for vehicle active suspension system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2): 354-361.
[15] 俞立. 鲁棒控制——线性矩阵不等式处理方法[M]. 第一版.北京:清华大学出版社, 2002:1-278.
[16] Apkarian P, Tuan H D, Bernussou J. Continuous-Time analysis, eigenstructure assignment, and H2 synthesis with enhanced Linear Matrix Inequalities(LMI) characterizations[J]. IEEE Transactions on Automatic Control, 2001,42(12): 1941-1946.
[17] 余志生. 汽车理论(第五版)[M]. 北京: 机械工业出版社, 2009.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}