考虑热效应的滚滑并存线接触粗糙界面的摩擦能量耗散特性研究

肖会芳1,2,孙韵韵3,陈再刚2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (5) : 229-236.

PDF(1100 KB)
PDF(1100 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (5) : 229-236.
论文

考虑热效应的滚滑并存线接触粗糙界面的摩擦能量耗散特性研究

  • 肖会芳1,2,孙韵韵3,陈再刚2
作者信息 +

Frictional energy dissipation features of rolling-sliding coexisting line contact rough interface considering thermal effect

  • XIAO Huifang1,2, SUN Yunyun3, CHEN Zaigang2
Author information +
文章历史 +

摘要

高速、重载工作条件下,机械结构滚滑并存界面的温度热效应变得显著,可导致系统的动力学特性、磨损特性和工作稳定性等发生根本性变化。本文通过建立滚滑并存线接触粗糙界面模型,基于界面的法向载荷由润滑油膜和粗糙体共同承担的载荷分配思想,采用Greenwood-Williamson统计模型描述粗糙表面形貌,考虑界面温度热效应的影响,建立了滚滑并存线接触粗糙界面的能量方程、油膜厚度方程和粗糙体接触压力方程,求解了界面温度场,获得了表面粗糙形貌、界面法向载荷和运动速度对热润滑油膜厚度参数和摩擦能量耗散量的影响特性,为机械结构的润滑状态预测和系统动态性能分析提供基础。

Abstract

The thermal effect of a rolling-sliding coexisting line contact rough interface becomes significant under high speed and heavily loaded working conditions to cause fundamental changes of the system’s dynamic characteristics, wear performance and stability. Here, considering thermal effect, the rolling-sliding coexisting line contact rough interface model was established based on a load sharing idea of total normal load on an interface being shared by a lubrication oil film and a rough interface. The rough surface topography was described using Greenwood-Williamson statistical model. The interface’s energy equation, oil film thickness equation and contact pressure equation were established considering the interface’s thermal effects. The interface’s tempeture field was solved. The influence characteristics of surface rough topography, interface normal load and motion velocity on thermal lubrication oil film thickness and frictional energy dissipation were derived. The results provided a foundation for mechanical structures’ lubration state prediction and the system dynamic performance analysis.

关键词

热效应 / 滚滑并存 / 粗糙界面 / 摩擦能量耗散

Key words

thermal effect / rolling-sliding / rough interface / frictional energy dissipation

引用本文

导出引用
肖会芳1,2,孙韵韵3,陈再刚2. 考虑热效应的滚滑并存线接触粗糙界面的摩擦能量耗散特性研究[J]. 振动与冲击, 2019, 38(5): 229-236
XIAO Huifang1,2, SUN Yunyun3, CHEN Zaigang2. Frictional energy dissipation features of rolling-sliding coexisting line contact rough interface considering thermal effect[J]. Journal of Vibration and Shock, 2019, 38(5): 229-236

参考文献

[1] Azushima A, Nakata Y, Toriumi T. Prediction of effect of rolling speed on coefficient of friction in hot sheet rolling of steel using sliding rolling tribo-simulator [J]. Journal of Materials Processing Technology, 2010, 210: 110-115.
[2] Dong H L, Hu J B, Li X Y. Temperature analysis of involute gear based on mixed elastohydrodynamic lubrication theory considering tribo-dynamic behaviors [J]. Journal of Tribology, 2014, 136: 021504-1-13.
[3] Bakoglidis K D, Nedelcu I, Ivanov I G, et al. Rolling performance of carbon nitride-coated bearing components in different lubrication regimes [J]. Tribology International, 2017, 114: 141-151.
[4] Björling M, Larsson R, Marklund P, et al. Elastohydrodynamic lubrication friction mapping- the influence of lubricant, roughness, speed, and slide-to-roll ratio[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2011, 225: 671-681.
[5] Bendaoud N, Mehala K, Youcefi A, et al. An experimental and numerical investigation in elastohydrodynamic behaviour of a plain cylindrical journal bearing heavily loaded [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2012, 226(10): 809-818.
[6] Ghahnavieh A B, Akbarzadeh S, Mosaddegh P. A numerical study on the performance of straight bevel gears operating under mixed lubrication regime [J]. Mechanism and Machine Theory, 2014, 75: 27-40.
[7] Akbarzadeh S, Khonsari M M. Prediction of steady state adhesive wear in spur gears using the EHL load sharing concept [J]. ASME Journal of Tribology, 2009, 131: 024503.
[8] Liang H, Guo D, Reddyhoff T, et al. Influence of thermal effects on elastohydrodynamic (EHD) lubrication behavior at high speeds [J]. Science China Technological Sciences, 2014, 58(3), 551-558.
[9] 邓玫,孙军,符永红等.计及轴受载变形的粗糙表面轴承热弹性流体动力润滑分析[J]. 机械工程学报, 2010, 46(1): 95-101.
DENG Mei, SUN Jun, FU Yonghong, et al. Thermoelastohydrodynamic lubrication analysis of bearing considering shaft deformation and surface roughness [J]. Journal of Mechanical Engineering, 2010, 46(1): 95-101.
[10] 卢宪玖,王优强,律辉等. 微观表面形貌对角接触球轴承热弹流润滑的影响[J].润滑与密封, 2014,39(6):49-55.
LU Xianjiu, WANG Youqiang, LÜ Hui, et al. Effect of microscopic surface morphology on thermal elastohydrodynamic lubrication of angular contact ball bearing [J]. Lubrication Engineering, 2014, 39(6):49-55.
[11] 陈园,刘桂萍,林禄生.计及润滑流体热效应的高速静压滑动轴承性能分析[J].机械强度,2015, 37( 6) : 1076-1083.
CHEN Yuan, LIU Guiping, LIN Lusheng. Analysis of high speed hydrostatic bearing’s performance considering thermal effect of lubrication fluid [J]. Journal of Mechanical Strength, 2015, 37(6): 1076-1083.
[12] Ghahnavieh A B, Akbarzadeh S, Mosaddegh P. A numerical study on the performance of straight bevel gears operating under mixed lubrication regime [J]. Mechanism and Machine Theory, 2014, 75: 27-40.
[13] Habchi W. Thermal analysis of friction in coated elastohydrodynamic circular contacts [J]. Tribology International, 2016, 93: 530-538.
[14] Linjamaa A, Lehtovaara A, Larsson R, et al. Modelling and analysis of elastic and thermal deformations of a hybrid journal bearing. Tribology International, 2017, //doi.org/10.1016/j.triboint. 2017.02.029
[15] Johnson, K L, Greenwood J A, Poon S Y. A simple theory of asperity contact in elastohydrodynamic lubrication [J]. Wear, 1972, 19, 91-108.
[16] Han L, Zhang D W, Wang F J. Predicting film parameter and friction coefficient for helical gears considering surface roughness and load variation [J]. Tribology Transactions, 2013, 56: 49-57.
[17] Akbarzadeh S, Khonsari M M. Performance of spur gears considering surface roughness and shear thinning lubricant [J]. ASME Journal of Tribology, 2008, 130: 021503-1-8.
[18] Johnson K L. Contact Mechanics. Cambridge: Cambridge University Press, 1985.
[19] Gelinck E R M, Schipper D J. Calculation of Stribeck curves for line contacts [J]. Tribology International, 2000, 33, 175-181.
[20] Hsu C H, Lee RT. An efficient algorithm for thermal elastohydrodynamic lubrication under rolling/sliding line contacts [J]. ASME Journal of Tribology, 1994,116, 762-769.
[21] Greenwood J A, Williamson J B P. Contact of nominally flat surfaces [J]. Proceedings of the Royal Society of London Series A, 1966, 295: 300–319.
[22] Serest A E, Akbarzadeh S. Mixed-elastohydrodynamic analysis of helical gears using load-sharing concept [J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228: 320-331.
[23] Masjedi M, Khonsari M M. Theoretical and experimental investigation of traction coefficient in line-contact EHL of rough surfaces [J]. Tribology International, 2014, 70, 179-189.

PDF(1100 KB)

312

Accesses

0

Citation

Detail

段落导航
相关文章

/