基于空间变光滑长度SPH方法研究

施文奎,沈雁鸣,陈坚强

振动与冲击 ›› 2019, Vol. 38 ›› Issue (5) : 259-264.

PDF(2566 KB)
PDF(2566 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (5) : 259-264.
论文

基于空间变光滑长度SPH方法研究

  • 施文奎,沈雁鸣,陈坚强
作者信息 +

SPH method with space-based variable smoothing length

  • SHI Wenkui, SHEN Yanming,CHEN Jianqiang
Author information +
文章历史 +

摘要

光滑粒子方法(SPH)在模拟界面变形问题方面有独特优势,但传统SPH方法大都采用区域恒定一致光滑长度算法,存在计算效率低的不足。为提高其在求解问题时的计算效率和空间分辨能力,采用粒子扩散分布模型,给每个粒子配置独立的光滑长度及质量,并使用空间变光滑长度SPH方法求解。以气泡上浮和非对称楔形体入水冲击两个算例验证了方法的有效性。结果显示,采用合理的粒子分布方式结合空间变光滑长度算法,均可获得与实验吻合很好的结果,但所需粒子数都较均匀粒子分布减少1/4,计算效率提高了25%。这表明空间变光滑长度SPH方法可以在保证计算精度的同时大幅提高计算效率,适合模拟三维多相流动、入水冲击等复杂工程问题。

Abstract

In order to improve the computational efficiency and spatial resolution of traditional SPH method, diffused particle distribution models were adopted. Each particle was assigned with an independent smoothing length and mass, and the SPH method with space-based variable smoothing length was proposed to solve problems. The effectiveness of the method was verified by simulating an air bubble rising case and an asymmetric wedge body water entry impact one. The results showed that both cases’ computation results with the proposed method agree well with the experimental ones with a reasonable particle distribution model; the particle numbers of both cases decreases by about 1/4 compared with those using the uniform particle distribution model, and their computation efficiencies increase by 25%; the SPH method with space-based variable smoothing length can be used not only to keep the computational accuracy but also significantly improve the computational efficiency, it is suitable for simulating complex engineering problems, such as, 3D multi-phase flow and water entry impact.

关键词

空间变光滑长度 / 计算效率 / 粒子分布方式 / 入水冲击 / SPH

Key words

space-based variable smoothing length / computational efficiency / particle distribution model / water-entry impact / SPH

引用本文

导出引用
施文奎,沈雁鸣,陈坚强. 基于空间变光滑长度SPH方法研究[J]. 振动与冲击, 2019, 38(5): 259-264
SHI Wenkui, SHEN Yanming,CHEN Jianqiang. SPH method with space-based variable smoothing length[J]. Journal of Vibration and Shock, 2019, 38(5): 259-264

参考文献

[1] Antoci C, Gallati M, Sibilla S. Numerical simulation of fluid–structure interaction by SPH[J]. Computers & Structures, 2007, 85(11–14): 879-890.
[2] Violeau D, Rogers B D. Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future[J]. Journal of Hydraulic Research, 2016, 54(1): 1-26.
[3] 初文华, 朱东俊. 结构入水冲击过程三维数值模拟及实验验证[J]. 舰船科学技术, 2015, 37(3): 21-27.
CHU Wen-hua, ZHU Dong-jun. Three-dimensional numerical and experimental investigation of the water entry process of cylinder structure [J]. SHIP SCIENCE AND TECHNOLOGY, 2015, 03:21-7.
[4] Monaghan J J. Smoothed particle hydrodynamics [J]. Annual review of astronomy and astrophysics, 1992, 30:543-74.
[5] 艾孜海尔•哈力克, 热合买提江•依明, 开依沙尔•热合曼, et al. 不同质量粒子分布SPH方法及其应用 [J]. 振动与冲击, 2015, 22:62-7.
Azhar Halik,Rahmatjan Imin,Kaysar Rahman,et al. SPH method with different mass particle distributions and its application [J]. JOURNAL OF VIBRATION AND SHOCK, 2015, 22:62-7.
[6] Benz W. Smooth particle hydrodynamics: A review. Numerical Modeling of Stellar Pulsation: Problems and Prospects[C]. Proceedings of NATO Workshop, Les Arcs, France, 1989.
[7] Evrard A E. Beyond N-body: 3D cosmological gas dynamics[J]. Monthly Notices of the Royal Astronomical Society, 1988, 235(3): 911-934.
[8] Springel V, Hernquist L. Cosmological smoothed particle hydrodynamics simulations: the entropy equation[J]. Monthly Notices of the Royal Astronomical Society, 2002, 333(3): 649-664.
[9] Monaghan J. SPH compressible turbulence[J]. Monthly Notices of the Royal Astronomical Society, 2002, 335(3): 843-852.
[10] Martin L, Nathan Q, Mihai B. Adaptive particle distribution for smoothed particle hydrodynamics[J]. International Journal for Numerical Methods in Fluids, 2010, 47(10-11): 1403-1409.
[11] Barcarolo D A, Oger G, Vuyst F D. Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method[J]. Journal of Computational Physics, 2014, 273: 640-657.
[12] 强洪夫, 高巍然. 完全变光滑长度SPH法及其实现[J]. 计算物理, 2008, 25(5): 569-575.
Qiang Hongfu , Gao Weiran. SPH Method with Fully Variable Smoothing Lengths and Implementation [J].  CHINESE JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 25(5):569-75.
[13] 苏文周. EFP侵彻钢靶板过程的光滑粒子法数值模拟研究 [J]. 四川兵工学报, 2013, 06: 20-25.
Su Wen-zhou. Numerical Simulation of Steel Target Penetration by Explosively Formed Projectile with Smoothed Particle Method [J]. Journal of Sichuan Ordnance, 2013, 06: 20-25.
[14] 强洪夫, 范树佳, 陈福振, et al. 基于SPH方法的聚能射流侵彻混凝土靶板数值模拟 [J]. 爆炸与冲击, 2016, 04: 516-24.
Qiang Hongfu,Fan Shujia,Chen Fuzhen, et al. Numerical simulation on penetration of concrete target by shaped charge jet with SPH method [J]. EXPLOSION AND SHOCK WAVES, 2016, 04: 516-24.
[15] Omidvar P, Stansby P K, Rogers B D. SPH for 3D floating bodies using variable mass particle distribution[J]. International Journal for Numerical Methods in Fluids, 2013, 72(4): 427–452.
[16] 沈雁鸣, 何琨, 陈坚强, et al. SPH统一算法对自由流体冲击弹性结构体问题模拟[J]. 振动与冲击, 2015, 34(16): 60-65.
Shen Yan-ming,HE Kun,CHEN Jian-qiang, et al. Numerical simulation of free surface flow impacting elastic structure with SPH uniform method [J]. JOURNAL OF VIBRATION AND SHOCK, 2015, 16: 60-5.
[17] Monaghan J J. Simulating free surface flows with SPH[J]. Journal of computational physics, 1994, 110(2): 399-406.
[18] Liu M, Liu G, Zong Z, et al. Numerical simulation of incompressible flows by SPH[C]. International Conference on Scientific & Engineering Computational, Beijing, 2001.
[19] Nugent S, Posch H. Liquid drops and surface tension with smoothed particle applied mechanics[J]. Physical Review E, 2000, 62(4): 4968.
[20] Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational physics, 1994, 114(1): 146-159.
[21] Xu L, Troesch A W, Peterson R. Asymmetric Hydrodynamic Impact and Dynamic Response of Vessels[J]. Journal of Offshore Mechanics & Arctic Engineering, 1999, 121(2): 83-89.
[22] Oger G, Doring M, Alessandrini B, et al. Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006, 213(2): 803-822.

PDF(2566 KB)

Accesses

Citation

Detail

段落导航
相关文章

/