轮船-桥墩碰撞简化荷载模型

宋彦臣1 王君杰1 尹海蛟2 刘慧杰1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (5) : 60-70.

PDF(1835 KB)
PDF(1835 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (5) : 60-70.
论文

轮船-桥墩碰撞简化荷载模型

  • 宋彦臣1  王君杰1  尹海蛟2  刘慧杰1
作者信息 +

Simplified impact load model for ship-bridge collisions

  • SONG Yanchen1,WANG Junjie1,YIN Haijiao2,LIU Huijie1
Author information +
文章历史 +

摘要

目前各国桥梁设计规范普遍将船舶撞击力处理为等效静力,忽略了冲击荷载引起的结构动力效应,为建立更加合理的实用荷载模型,本文建立了5艘轮船的有限元模型,采用正撞刚性墙模型,通过数值仿真获得了45条不同撞击速度下的撞击力时程样本。提出采用修正半波正弦函数近似描述撞击力样本过程,通过数理统计确定了模型的实用参数。最后,以一座连续梁桥为例进行了接触碰撞反应分析与撞击力时程反应分析,并将修正半波正弦荷载模型的响应求解误差分为3类,分别讨论了3种误差对结构响应误差的贡献大小。算例分析结果表明,本文建立的轮船修正半波正弦荷载模型具有良好的求解精度,具有很好的工程实用价值。

Abstract

The ship-bridge impact force in most current codes worldwide is taken as an equivalent static force to ignore dynamic effect between structures due to ship-bridge collisions. In order to establish a simplified impact load model as a better alternative of the equivalent static load, 5 finite element models of ships were built. A ship rigid wall head-on collision model was used to simulate ship-bridge collision processes. 45 impact force time history samples under different impact velocities were obtained through numerical simulation. A modified half-wave sine function model was proposed to approximately describe impact force sample processes and the model’s parameters were determined with statistical analysis. Finally, taking a continuous girder bridge as an example, the ship-bridge contact impact response analysis and the impact force time history analysis were conducted. The response-solving error of the modified half-wave sine load model was classified into three types. Then the contribution of each type error to the structural response error was estimated. The example results showed that the modified half-wave sine load model proposed here has a good solving accuracy and is valuable for practical application.

关键词

船-桥碰撞 / 轮船 / 动力效应 / 撞击力时程 / 简化荷载模型

Key words

Ship-Bridge Collision / Ship / Dynamic Effects / Impact Force Time History / Simplified Impact Load Model

引用本文

导出引用
宋彦臣1 王君杰1 尹海蛟2 刘慧杰1. 轮船-桥墩碰撞简化荷载模型[J]. 振动与冲击, 2019, 38(5): 60-70
SONG Yanchen1,WANG Junjie1,YIN Haijiao2,LIU Huijie1. Simplified impact load model for ship-bridge collisions[J]. Journal of Vibration and Shock, 2019, 38(5): 60-70

参考文献

[1] AASHTO-2009. Guide Specifications and Commentary for Vessel Collision Design of Highway Bridges[S]. 2nd edition, American Association of State Highway and Transportation Officials, Washington, DC.
[2] AASHTO-2012. LRFD bridge design specifications[S]. American Association of State Highway and Transportation Officials, Washington, DC.
[3] JTG D62-2004 公路桥涵设计通用规范[S]. 北京:人民交通出版社, 2004.
JTG D62-2004 General Code for Design of Highway Bridges and Culverts. Beijing: China Communication Press, 2004.
[4] Eurocode B S. 1. Actions on structures-Part 1-7: General actions-Accidental actions[S]. British Standard: London, 2006.
[5] Woisin G. Design against collision Int[C]//Symp. on Advances in Marine Technology, Trondheim, Norway. 1979: 1.
[6] Patev, R. C., B. C. Barker, and L. V. Koesler, III., Full-Scale Barge Impact Experiments[R]. 2003.
[7] Consolazio, G. R., Cook, R. A., McVay, M. C., Cowan, D., Biggs, A., & Bui, L. Barge Impact Testing of the St. George Island Causeway Bridge, Phase III: Physical Testing and Data Interpretation[R]. 2006.
[8] Consolazio G R, McVay M C, Cowan D R, et al. Development of improved bridge design provisions for barge impact loading[R]. 2008.
[9] Consolazio G R, Cowan D R. Numerically efficient dynamic analysis of barge collisions with bridge piers[J]. Journal of Structural Engineering, 2005, 131(8): 1256-1266.
[10] Davidson M T. Simplified dynamic barge collision analysis for bridge pier design[D]. University of Florida, 2007.
[11] Davidson M, Chung J, Bollmann H, et al. Computing the responses of bridges subject to vessel collision loading using dynamic analysis[J]. Bridge Structures, 2013, 9(4): 169-183.
[12] Davidson M, Consolazio G, Getter D. Dynamic amplification of pier column internal forces due to barge-bridge collision[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010 (2172): 11-22.
[13] ASIS. The Conference of Prediction Methodology of Tanker Structural Failure & Consequential Oil Spill. 1993
[14] 李军. 冲击数值模拟可靠性的试验检验[D]. 上海:同济大学,2009.
Jun Li. Experimental Examination of the Trustworthiness of Impact Numerical Simulation [D]. Shanghai, Tongji University, 2009.
[15] Kantrales G C, Consolazio G R, Wagner D, et al. Experimental and Analytical Study of High-Level Barge Deformation for Barge–Bridge Collision Design[J]. Journal of Bridge Engineering, 2015, 21(2): 04015039.
[16] Fan W, Yuan W C. Shock spectrum analysis method for dynamic demand of bridge structures subjected to barge collisions[J]. Computers & Structures, 2012, 90: 1-12.
[17] Fan W, Zhang Y, Liu B. Modal combination rule for shock spectrum analysis of bridge structures subjected to barge collisions[J]. Journal of Engineering Mechanics, 2015, 142(2): 04015083.
[18] Wang J, Song Y, Yu Z. Impact factor method for design of bridge foundations under ship collisions[J]. Advances in Structural Engineering, 2017, 20(4): 534-548.
[19] Gimsing, N. J., Madsen, K., and Nissen, J. East Bridge. Copenhagen: The Great Belt Bridge, 1988.
[20] Gimsing, N. J., Madsen, K., and Nissen, J. West Bridge. Copenhagen: The Great Belt Bridge., 1988.
[21] Fan W, Yuan W, Yang Z, et al. Dynamic demand of bridge structure subjected to vessel impact using simplified interaction model[J]. Journal of Bridge Engineering, 2010, 16(1): 117-126.
[22] Fan W, Yuan W. Ship bow force-deformation curves for ship-impact demand of bridges considering effect of pile-cap depth[J]. Shock and Vibration, 2014, 2014.
[23] 王君杰, 宋彦臣, 卜令涛. 船舶与桥墩撞击力-撞深关系概率模型[J]. 中国公路学报, 2014, 27(6): 59-67.
Junjie Wang, Yanchen Song, Lingtao Bu. Probabilistic Model of Impact Force-penetration for Ship-bridge Collision[J]. China Journal of Highway and Transport, 2014, 27(6): 59-67.
[24] 樊伟, 袁万城, 杨智, 等. 高桩承台桥梁船撞动力需求的时程分析法[J]. 同济大学学报 (自然科学版), 2010, 38(12): 1719-1724.
Fan, W., Yuan, W., Yang, Z., et.al. Development of time history analysis for dynamic demand of elevated pile-cap bridge subjected to vessel collision[J]. Journal of Tongji University (Natural Science), 2010, 38(12): 1719-1724.
[25] W. Fan & W. C. Yuan. A simple procedure for determination of the dynamic ship-impact load on bridge structures[J]. Structures Under Shock and Impact XIII, 2014, 141: 73:85.
[26] Code J P M. Joint committee on structural safety[S]. URL: www. jcss. ethz. ch, 2001.
[27] Jones N. Structural impact[M]. Cambridge university press, 2011.
[28] Hallquist, J. O. LS-DYNA keyword user’s manual., Livermore Software Technology Corporation 970, 2007.
[29] Chopra A K. Dynamics of structures: theory and applications to earthquake engineering[M]. Prentice-Hall, 2001.
[30] JTG D62-2004. 公路钢筋混凝土及预应力混凝土桥涵设计规范[S]. 北京:人民交通出版社, 2004.
JTG D62-2004. Code for design of highway reinforced concrete and prestressed concrete bridges and culverts. Beijing, China Communication Press, 2004.
[31] JTG D63-2007公路桥涵地基与基础设计规范[S]. 北京:人民交通出版社, 2007.
JTG D63-2007 Code for design of ground base and foundations of highway bridges and culverts[S]. Beijing: China Communication Press, 2007.
[32] JTG/T B02-01-2008公路桥梁抗震设计细则[S]. 北京:人民交通出版社, 2008.
JTG/T B02-01-2008 Guidelines for seismic design of highway bridges[S]. Beijing:China Communication Press, 2008.

PDF(1835 KB)

514

Accesses

0

Citation

Detail

段落导航
相关文章

/