高烈度地震区隧道洞口段刚柔相济抗减震模型试验研究

崔光耀1,纪磊1,王明年2,3,朱长安4

振动与冲击 ›› 2019, Vol. 38 ›› Issue (5) : 92-97.

PDF(1226 KB)
PDF(1226 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (5) : 92-97.
论文

高烈度地震区隧道洞口段刚柔相济抗减震模型试验研究

  • 崔光耀1,纪磊1,王明年2,3,朱长安4
作者信息 +

Shock absorber with rigid-flexible combination model tests for tunnel opening section in high intensity seismic areas

  • CUI Guangyao1,JI Lei1,WANG Mingnian2,3,ZHU Chang’an4
Author information +
文章历史 +

摘要

为研究高烈度地震区隧道洞口段刚柔相济抗减震技术,依托白云顶隧道进口段,开展了大型振动台模型试验,通过对试验数据的分析,主要研究了地震动峰值加速度、纵向应变、接触应力及结构内力。试验结果表明:仅采取结构加强措施,隧道洞口段全段结构安全系数最小值增长百分比在30%~65%之间;仅施设减震缝,隧道洞口段全段结构安全系数最小值增长百分比在40%~55%之间,减震缝在消减强制位移方面有明显作用,减震效果明显;采取刚柔相济抗减震措施,隧道洞口段全段结构安全系数最小值增长百分比在85%~145%之间,其在抵抗地震震动、消减强制位移方面作用显著,减震效果最佳。研究成果可为高烈度地震区交通隧道抗震性能的提高提供借鉴。

Abstract

In order to study shock absorber technology with rigid-flexible combination for tunnel opening section in high intensity seismic areas, taking the entrance section of Bai-yunding tunnel as a background, large-scale shaking table model tests were conducted to study peak acceleration of ground motion, longitudinal strain, contact stress and structural internal forces through analysing test data. The test results showed that only taking structural strengthening measures, the growth percentage of structure safety factor minimum value of the whole tunnel opening section is between 30%—65%; only setting a shock absorption gap, that is between 40%—55%; the shock absorption gap has an obvious action to reduce forced displacements, and its shock absorption effect is obvious; taking the shock absorber technology with rigid-flexible combination, the growth percentage of structure safety factor minimum value of the whole tunnel opening section is between 85%—145% and its action is remarkable to resist earthquake motion and reduce forced displacements, the shock absorption effect is the best. The study results provided a reference for improving the aseismic performance of transportation tunnels in high intensity seismic areas.

关键词

隧道工程 / 高烈度地震区 / 洞口段 / 刚柔相济 / 抗减震 / 模型试验

Key words

tunnel engineering / highly seismic area / tunnel portal part / rigid-flexible composite / anti-seismic and damping;model test

引用本文

导出引用
崔光耀1,纪磊1,王明年2,3,朱长安4. 高烈度地震区隧道洞口段刚柔相济抗减震模型试验研究[J]. 振动与冲击, 2019, 38(5): 92-97
CUI Guangyao1,JI Lei1,WANG Mingnian2,3,ZHU Chang’an4. Shock absorber with rigid-flexible combination model tests for tunnel opening section in high intensity seismic areas[J]. Journal of Vibration and Shock, 2019, 38(5): 92-97

参考文献

[1] 日本土木学会. コンクリート標準示方書-耐震設計編[M]. 東京: 鹿島出版会, 1997. (Japan Society of Civil Engineers. Standard specification for concrete seismic design guide[M]. Tokyo: Kajima Publishing, 1997.( in Japanese))
[2] 崔光耀, 王明年, 林国进, 等. 汶川地震区典型公路隧道衬砌震害类型统计分析[J].中国地质灾害与防治学报, 2011,22(1):122-127. (Cui Guang-yao, Wang Ming-nian, Lin Guo-jin, et. Statistical analysis of Earthquake damage types of typical highway tunnel lining structure in Wenchuan seismic disastrous area[J]. The Chinese Journal of Geological Hazard and Control, 2011,22(1):122-127. (in Chinese))
[3] 四川省交通厅公路规划勘察设计研究院. “5.12”汶川特大地震四川灾区国省干线公路检测评估技术总结[R]. 成都: 四川省交通厅, 2008. (Highway Planning, Survey, Design and Research Institute, Sichuan Provincial Communications Department. Conclusion of detecting and evaluating of national and provincial highways in Sichuan Province after“5.12”Wenchuan earthquake[R]. Chengdu: Sichuan Provincial Communications Department, 2008. (in Chinese))
[4] 高  波, 王峥峥, 袁  松, 等. 汶川地震公路隧道震害启示[J]. 西南交通大学学报, 2009, 44(3): 336-374. (GAO Bo, WANG Zheng-zheng, YUAN Song, et al. Lessons learnt from damage of highway Tunnels in Wenchuan earthquake[J]. Journal of Southwest Jiaotong University, 2009, 44(3): 336-374. (in Chinese))
[5] 崔光耀, 伍修刚, 王明年, 等. 汶川8.0级大地震公路隧道震害调查与震害特征[J]. 现代隧道技术, 2017, 54(2): 9-16. (CUI Guang-yao, WU Xiu-gang, WANG Ming-nian, et al. Earthquake damages and characteristics of highway tunnels in the 8.0-magnitude Wenchuan earthquake[J]. Modern Tunnelling Techmology, 2017, 54(2): 9-16. (in Chinese))
[6] 王明年, 于  丽, 林国进, 等. 公路隧道抗震及减震[M]. 北京: 科学出版社, 2012. (WANG Ming-nian, YU Li, LIN Guo-jin, et al. Tunnel seismic and shock absorption[M]. Beijing: Science Press, 2012. (in Chinese))
[7] 崔光耀, 王明年, 于  丽, 等. 汶川地震公路隧道洞口结构震害分析及震害机理研究[J]. 岩土工程学报, 2013, 35(6): 1084-1091. (CUI Guang-yao, WANG Ming-nian, YU Li, et al. Analysis of seismic damage and mechanism of portal structure of highway tunnel in Wenchuan earthquake[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1084-1091. (in Chinese))
[8] 王维嘉. 公路隧道洞口段震害机理及抗减震措施研究[D]. 成都:西南交通大学, 2012. (Wang Wei-jia. Study on the Damage Mechanism of Tunnel Portal Section and the Anti-Damping Measures[D]. Chengdu:Southwest Jiaotong University, 2012. (in Chinese))
[9] 蒋树屏, 文栋良, 郑升宝. 嘎隆拉隧道洞口段地震响应大型振动台模型试验研究[J]. 岩石力学与工程学报, 2011, 30(4): 649-656. (JIANG Shu-ping, WEN Dong-liang, ZHENG Sheng-bao. Large-scale shaking table test for seismic response in portal section of galongla tunnel[J]. Rock and Soil Mechanics, 2011,30(4):649-656. (in Chinese))
[10] 李育枢, 李天斌, 王  栋. 黄草坪2#隧道洞口段减震措施的大型振动台模型试验研究[J]. 岩石力学与工程学报. 2009, 28(6): 1128-1135. (LI Yu-shu, LI Tian-bin, WANG Dong. Large-scale shaking table test for vibration-absorption measures of portal section of Huangcaoping tunnel #2[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1128-1135. (in Chinese))
[11] 黄博. 抗震缝及相关结构构造在隧道抗震减震中的研究[D]. 重庆:重庆交通大学, 2012. (Huang Bo. Study on seismic joint and related structure construction in tunnel shock absorption[D]. Chongqing:Chongqing Jiaotong University, 2012. (in Chinese))
[12] 郑 杰, 戚承志, 陈灿寿, 等. 隧道在纵向地震作用下的动力响应分析[J]. 解放军理工大学学报(自然科学版), 2014, 15(4): 347-352. (Zheng Jie, Qi Cheng-zhi, Chen Can-shou, et. Dynamic response of tunnel under longitudinal seismic action[J]. Journal PLA University of Science and Technology(Natural Science Edition), 2014, 15(4): 347-352. (in Chinese))
[13] 陈 亮, 王永亮, 文栋梁, 等. 嘎隆拉隧道断层区进洞口段轴向地震响应及抗震缝效果研究[J]. 交通科技, 2013, (5): 86-90. (Chen Liang, Wang Yong-liang, Wen Dong-liang, et. Longitudinal seismic response and effect of aseismatic joint of tunnel entrance in fault zone, 2013, (5): 86-90. (in Chinese))
[14] 王峥峥, 王正松, 高 波. 高烈度地震区连拱隧道洞口段抗震措施研究[J]. 中国公路学报, 2011, 24(6): 80-85. (WANG Zheng-zheng, WANG Zheng-song, GAO Bo. Research on Seismic Measures of Double-arch Tunnel Portals in High-intensity Earthquake Zone[J]. China Journal Highway and Transport, 2011, 24(6): 80-85. (in Chinese))
[15] 李福献. 山岭隧道洞口段衬砌刚度对其抗震性能的影响[J]. 国防交通工程与技术, 2014, (3): 4,15-19. (LI Fu-xian. On the Influence of the Linling Stiffness on its Seismic Performance of a Tunnel at the Portal Section[J]. Traffic Engineering and Technology for National Defence, 2014, (3): 4,15-19. (in Chinese))
[16] 重庆交通科研设计院. 公路隧道设计规范(JTG D70-2004)[S]. 北京: 人民交通出版社, 2004. (Chongqing Communications Research and Design Institute. Code for Design of Road Tunnel[S]. Beijing: China Communications Press, 2004. (in Chinese)

PDF(1226 KB)

Accesses

Citation

Detail

段落导航
相关文章

/