舰用中低频伪速度谱测量摆性能研究

赵鹏铎1,曾泽璀1,2,张磊1,2,闫明2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (6) : 1-6.

PDF(1998 KB)
PDF(1998 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (6) : 1-6.
论文

舰用中低频伪速度谱测量摆性能研究

  • 赵鹏铎1,曾泽璀1,2,张磊1,2,闫明2
作者信息 +

Performances of a novel pendulum for measuring ship low-middle frequency pseudo-velocity spectrums

  • ZHAO Pengduo1, ZENG Ze-cui 1,2 , ZHANG Lei1,2, YAN Ming2
Author information +
文章历史 +

摘要

以校验压电加速度计所测量的中低频段伪速度谱和取代传统低频振子、簧片仪为目的,设计一种新型测量装置-测量摆,用于测量横向冲击环境的伪速度谱。首先建立测量摆运动微分方程,采用Ritz-Galerkin方法进行近似求解模态频率,并用杜哈美积分方法求解冲击载荷下的最大角度响应;其次利用有限元软件ANSYS动力学模块建立有限元模型计算其模态频率和最大角度响应;最后通过振动台对测量摆原理样机进行扫频和冲击实验最终验证其测量性能。理论计算和实验结果表明,测量摆不仅能较好地校验加速度计所测的中低频段伪速度谱曲线;而且与低频振子相比,具有重量轻体积小的优势;与簧片仪相比,具有测量频域范围广的优点。

Abstract

Aiming at verifying the low-middle frequency pseudo-velocity spectrums measured by piezoeletric accelerater and replacing the conventional low-frequency oscillator and reed, a novel measuring pendulum was proposed. The equation of motion of the measuring pendulum was derived. The Ritz-Galerkin method was used to solve the equation to obtain the modal frequency, and the Duhamel integral method was used to obtain the maximum angle response of the system. To verify the analysis method, the finite element software ANSYS was used to calculate the modal frequency and maximum angle response. The performance of a measuring pendulum prototype was tested on a vibration excitation platform. The results demonstrate that the measuring pendulum can well verify the low-middle frequency pseudo-velocity spectrums measured by piezoeletric accelerater. It has the smaller volume than the low-frequency oscillator and the larger measuring frequency field than the reed.

关键词

伪速度谱 / 低频振子 / 测量摆 / Ritz-Galerkin方法

Key words

pseudo-velocity spectrum / low frequency oscillator / measuring pendulum / Ritz-Galerkin method

引用本文

导出引用
赵鹏铎1,曾泽璀1,2,张磊1,2,闫明2. 舰用中低频伪速度谱测量摆性能研究[J]. 振动与冲击, 2019, 38(6): 1-6
ZHAO Pengduo1, ZENG Ze-cui 1,2,ZHANG Lei1,2, YAN Ming2. Performances of a novel pendulum for measuring ship low-middle frequency pseudo-velocity spectrums[J]. Journal of Vibration and Shock, 2019, 38(6): 1-6

参考文献

[1] 汪  玉, 华宏星. 舰船现代冲击理论及应用[M]. 北京:科学出版社, 2005.
WANG Yu, HUA Hong-xing. Theory and Application of Ship's Modern Shock [M]. BEI Jing: Science Press, 2005.
[2] Broch J T. Mechanical vibration and shock measurements[M]. Denmark: Brüel & Kjær press, 1980.
[3] 都军民, 戴宗妙. 冲击响应谱在冲击试验中的应用研究[J].舰船科学技术, 2007, 29(A01): 19-21.
DU Jun-min, DAI Zong-miao. Study of shock response spectrum applied in shock experiment [J]. Ship Science and Technology, 2007, 29(A01): 19-21.
[4] 李  杰,刘  俊.制导弹药用微惯性测量单元结构设计[J]. 兵工学报, 2013, 34(6): 711-717.
LI Jie, LIU Jun. Design of micro-electromechanical systems inertial measurement unit Structure for guided ammunition [J]. Acta Armamentarii, 2013, 34(6): 711-717.
[5] 吴祖堂, 杨德猛, 邹  虹. 压电加速度传感器冲击测量中低频失真的理论分析与实验验证[J].传感技术学报, 2010, 23(11): 1586-1589.
WU Zu-tang, YANG De-meng, ZOU Hong. Theoretical analysis and validation of low frequency distortion of piezoelectricity accelerometer for shock measurement [J]. Chinese Journal of Sensors and Actuators
[6] 夏伟强, 马铁华, 范锦彪, 等.压电式加速度传感器在高冲击环境下的零漂分析[J].传感技术学报, 2007, 20(7): 1522-1527.
XIA Wei-qiang, MA Tie-hua, FAN Jin-biao, et al. Analysis of zero-drift of the piezoelectric acceleration sensor in high-impact testing [J]. Chinese Journal of Sensors and Actuators, 2007, 20(7):1522-1527.
[7] Xia W, Fan S, Xing W, et al. Restraining zero drift in an ultrahigh-g impact environment [J]. Measurement Science and Technology, 2012, 23(3): 035108.
[8] Kwon J I, Lee S G, Chung J H. Shock response analysis of MIL-S-901D floating shock platform [J]. Journal of the Society of Naval Architects of Korea, 2005, 42(5): 493-498.
[9] Kwon J I, Lee S G, Chung J H. Numerical simulation of MIL-S-901D heavy weight shock test of a double resiliently mounted main engine module [J]. Journal of the Society of Naval Architects of Korea, 2005, 42(5): 499-505.
[10] 潘建强, 唐佳炜, 张克明. 簧片式冲击谱测量仪电测技术[J]. 应用科技, 2010, 37(11): 14-17.
PAN Jian-qiang, TANG Jia-wei, ZHANG Ke-ming. The electromotive technology based on sheet metal-spring which is used to measure shock spectrum [J]. Applied Science and Technology, 2010, 37(11): 14-17.
[11] 高  鹏, 孟宪松, 赵鹏铎, 等. 低频振子设计及其冲击响应试验分析[J]. 噪声与振动控制, 2016, 36(4):202-205.
GAO Peng, MENG Xian-song, ZHAO Peng-duo, et al. Design of a low frequency vibrator and analysis of its shock response experiment [J]. Noise and Vibration Control, 2016, 36(4): 202-205.
[12] 闫  明, 曾泽璀, 王玉生. 振荡与摩擦对横向冲击试验台的波形影响分析[J]. 机械设计与制造, 2015(08): 39-41.
YAN Ming, ZENG Ze-cui, WANG Yu-sheng. The Impact Analysis of Waveform Produced by the Vibration and Friction Impacted on the Lateral Impact Table [J]. Machinery Design & Manufacture, 2015(08):39-41.
[13] 刘建湖,潘建强,何 斌.各主要海军国家设备抗冲击标准之比较[J]. 应用科技, 2010, 37(09): 17-25.
LIU Jian-hu, PAN Jian-qiang, HE Bin. Comparison of anti-shock criteria for equipment in some primary navy countries [J]. Applied Science and Technology, 2010, 37(09): 17-25.
[14] 王  军, 郭  君, 姚熊亮, 等.浮动冲击平台对应实船冲击环境判别分析[J].振动与冲击, 2014, 33(6): 107-112.
WANG Jun, GUO Jun, YAO Xiong-liang, et al. Discriminant analysis on the shock environment of floating shock platform as opposed to real ship [J]. Journal of Vibration and Shock, 2014, 33(6): 107-112.
[15] 李国华, 李玉节. 浮动冲击平台水下爆炸冲击谱测量与分析[J]. 船舶力学, 2000, 4(2): 560.
LI Guo-hua, LI Yu-jie. Shock spectrum measurement and analysis of underwater explosion on a floating shock platform [J]. JOURNAL OF SHIP MECHANICS, 2000, 4(2): 560.

PDF(1998 KB)

613

Accesses

0

Citation

Detail

段落导航
相关文章

/