在斜拉索表面缠绕螺旋线能有效抑制斜拉索风雨激振现象,但却改变了斜拉索的气动外形。为了研究不同螺旋线参数对斜拉索气动稳定性的影响,本试验通过自行设计的斜拉索测振试验系统,在风洞中对直径为120 mm的斜拉索模型和25种螺旋线斜拉索模型进行了刚性模型测振试验。分析了各工况下斜拉索平衡位置和平均升力系数随雷诺数的变化规律。结果表明:相同螺旋线直径下,螺旋线缠绕间距越小,斜拉索模型的升力越小、平衡位置偏移量越小;相同缠绕间距下,螺旋线直径越大,斜拉索模型的平均升力越小、平衡位置改变量越小;缠绕间距越小或螺旋线直径越大,改变另一个参数对平衡位置偏移量产生的影响越小;螺旋线缠绕间距越大,平衡位置稳定性越差。
Abstract
The helical line on the surface of cables can effectively suppress the wind and rain excitation on the cables, but it will change its aerodynamic shape. A vibration test system for stay cables was designed to study the effects of different parameters of helical lines on the aerodynamic stability of oblique cables, and 25 kinds of helical line models for 120 mm-diameter stay cables were tested for vibrations in a wind tunnel.The relationship of the equilibrium positions and average lift coefficients of stay cables with the Reynolds numbers were analyzed.According to the results, with the same diameter of helical line, the smaller the helical line winding distance is, the smaller the lift force of the cable model is, and the smaller the equilibrium position offset is. With the same helical line winding distance, the average lift forces and the equilibrium position offset of stay cables become smaller with the increase of helical line diameter. The effect of the change of another parameter on the equilibrium position offset becomes small with the decrease of helical line winding distance or the increase of helical line diameter. And the larger the helical line winding distance is, the worse the equilibrium position stability is.
关键词
螺旋线 /
斜拉索 /
雷诺数 /
气动力 /
气动稳定性
{{custom_keyword}} /
Key words
helical line /
stay-cables /
Reynolds number /
aerodynamic force /
aerodynamic stability
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 裴岷山,张喜刚,朱斌等. 斜拉桥的拉索纵桥向风荷载计算方法研究[J]. 中国工程科学, 2009. 11(3): 26-30.
PEI Min-shan, ZHANG Xi-gang, ZHU Bin, et al. Cable-stayed bridge cable of longitudinal wind load calculation method research [J]. Science in China, 2009. 11(3): 26-30.
[2] MACDONALD J H G, LAROSE G L. Two-degree-of-freedom inclined cable galloping Part 1: General formulation and solution for perfectly tuned system [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96 (3): 291―307.
[3] ZUO D, JONES N P, Main J A. Field observation of vortex and rain-induced stay-cable vibrations in three-dimensional environment [J]. Journal of Wind Engineering and Industrial Aerodynamicc, 2008, 96 (6): 1124-1133.
[4] MATSUMOTO M, The role of water rivulet on inclined cable aerodynamics [C]. Proceedings of the 6th Asia-Pacific Conference on Wind Engineering Seoul, Korea, 2005: 63-77.
[5] 李文勃,林志兴. 一致斜拉桥拉索风雨激振的气动措施研究[J]. 土木工程学报,2005, 38(2): 48-53.
LI Wen-bo, LIN Zhi-xing. Consistent cable-stayed bridge cable rain vibration of the pneumatic measure study [J]. Journal of Civil Engineering, 2005, 38(2): 48-53.
[6] HIKAMI Y, SHIRAISHI N. Rain-wind induced vibrations in cable stayed bridge [J]. Journal of wind Engineering and Industrial Aerodynamics, 1988, 29(1): 409-418.
[7] MATSUMOTO M. The role of water rivulet on inclined cable aerodynamics [C]. Proceedings of the 6th Asia-Pacific Conference on Wind Engineering. Seoul: International Association for Wind Engineering, 2005: 63-77.
[8] CHEN S, IRWIN P A, JAKOBSEN J B, et al. Divergent Motion of Cables exposed to skewed to Wind Proceeding of The 5th International Symposium Cable Dynamics [M]. Santa, Margherita, 2003:271-278.
[9] NIKITAS N, MACDONALD J, JAKOBSEN J, et al. Critical Reynolds number and galloping instabilities: experiments on circular cylinders [J]. Experiment Fluids, 2012, 52(4): 1295-1306.
[10] Rocchi D, Zasso A. Vortex shedding from a circular cylinder in a smooth and wired configuration: comparison between 3D LES simulation and experimental analysis [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(4): 475-489.
[11] 李寿英,钟卫. 缠绕螺旋线斜拉索气动性能的试验研究[J]. 土木工程学报,2013, 46(7): 108-115.
LI Shou-ying, Zhong Wei. Experimental study on the aerodynamic performance of the helical line cable [J]. China Civil Engineering Journal, 2013, 46(7): 108-115.
[12] 王卫华,李明水,陈忻. 斜拉索的阻力系数研究[J]. 空气动力学报,2005, 23(3): 389-393.
WANG Wei-hua, LI Ming-shui, CHEN Xi. The resistance coefficient of stay-cables study [J]. Journal of Aerodynamic, 2005, 23(3): 389-393.
[13] 刘庆宽,李聪辉,郑云飞等.缠绕螺旋线的斜拉桥斜拉索平均气动阻力特性的试验研究[J]. 土木工程学报. (已录用)
LIU Qing-kuan, LI Cong-hui, ZHENG Yun-fei, et al. Experimental study on average aerodynamic drag characteristics of cable stayed cable of cable-stayed bridge [J]. Journal of Civil Engineering Society.
[14] 李聪辉. 斜拉桥斜拉索气动措施对气动力影响的试验研究[D]. 石家庄:石家庄铁道大学土木工程学院,2010.
LI Cong-hui. Experimental investigation of aerodynamic measures on the influence of the aerodynamic forces of cables in cable-stayed bridges [D]. Shijiazhuang: Shijiazhuang Tiedao University, 2010.
[16] 刘庆宽. 多功能大气边界层风洞的设计与建[J].实验流体力学, 2011, 25(3): 66-70.
LIU Qing-kuan. Aerodynamic and structure design of functional boundary-layer wind tunnel [J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3): 66-70.
[16] 邵奇. 斜拉索气动力及流场特性研究[D]. 石家庄:石家庄铁道大学,2015.
SHAO Qi. Experimental investigation of aerodynamic forces and flow characteristics of cables in cable-stayed bridges[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2015.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}