高速破片穿透液舱的数值模拟研究

徐思博,孟子飞,刘文韬,曹雪雁

振动与冲击 ›› 2019, Vol. 38 ›› Issue (6) : 144-150.

PDF(1333 KB)
PDF(1333 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (6) : 144-150.
论文

高速破片穿透液舱的数值模拟研究

  • 徐思博,孟子飞,刘文韬,曹雪雁
作者信息 +

Numerical simulation of a high-speed fragment penetrating a liquid tank

  • XU Sibo,MENG Zifei,LIU Wentao,CAO Xueyan
Author information +
文章历史 +

摘要

在水下近场爆炸载荷的研究中,高速破片侵彻问题异常复杂,由于爆炸实验的不可重复性和危险性,如何运用数值仿真较好地模拟侵彻问题一直备受关注。本文运用耦合的欧拉-拉格朗日(CEL)算法,开展了高速破片侵彻液舱实验模型的仿真,验证了CEL算法在处理侵彻问题的可靠性和准确性;在此基础上,开展了不同破片速度和液体装载量对穿透压力和空穴演化的影响研究,结果表明破片速度衰减规律、空穴演化以及侵彻过程中压力时历曲线与实验值基本一致;弹道远离液面时,液体装载量并不影响速度衰减规律;随着与自由液面距离减小,近自由液面入射弹道非对称性差异可由20%增加到48%;破片初始速度增加,前置隔板的变形略有增加,后置隔板的变形呈非线性增长。

Abstract

The penetration of high speed fragments has been concerned for a long time which always occurs during the process of near-field underwater explosions. Due to the randomness of explosions and expensive costs of the explosion tests, it’s important to build a numerical model to simulate it exactly. In the present paper, the coupled eulerian-lagrangian(CEL) method was applied to simulate the process of a high speed fragment impacting on a liquid tank. Furthermore, the effects of the fragment velocity and liquid quantity on the pressure and cavity evolution were discussed. The numerical results, including the velocity decay vs. time of fragment, cavity evolution and pressure at different points of the fluid under different impact velocities, are quite consistent with the experimental tests results. If the trajectory is far away from the surface, the velocity decay vs. time is not influenced by the liquid quantity. As the distance from the free liquid surface decreases, the asymmetrical difference of incident trajectory will increase from 20% to 48%. The deformation on the entry wall of a tube is in direct proportion to the initial velocity of fragments, while the deformation on the exit wall has a nonlinear increase.

关键词

高速破片 / 液舱 / CEL方法 / 侵彻问题 / 空穴演化

Key words

 high speed fragment / fuel tank / CEL / penetration / expansion of the cavity

引用本文

导出引用
徐思博,孟子飞,刘文韬,曹雪雁. 高速破片穿透液舱的数值模拟研究[J]. 振动与冲击, 2019, 38(6): 144-150
XU Sibo,MENG Zifei,LIU Wentao,CAO Xueyan. Numerical simulation of a high-speed fragment penetrating a liquid tank[J]. Journal of Vibration and Shock, 2019, 38(6): 144-150

参考文献

[1]. 矶部孝. 水下弹道的研究[M]. 国防工业出版社, 1983.
[2]. Burt F S. Hydrodynamic research [J]. British Journal of Applied Physics, 1961, 12(7):323-328.
[3]. Worthington A M, Cole R S. Impact with a Liquid Surface Studied by the Aid of Instantaneous Photography. Paper II [J]. Philosophical Transactions of the Royal Society of London, 1900, 194:175-199.
[4]. 杜志鹏, 李晓彬, 夏利娟,等.舰船防护水舱在接近爆炸载荷作用下响应的理论研究[J]. 船舶力学, 2007, 11(1):119-127.
DU Zhi-peng, LI Xiao-bin, XIA Li-juan, et al. Theory research on the response of the warship protective tank under near-by explosion[J]. Journal of Ship Mechanics, 2007, 11(1):119-127.
[5]. 严忠汉. 入水弹道学研究评述[J]. 水动力学研究与进展, 1984(2):135-143.
YAN Zhong-han. Research commentary on Water-entry ballistics [J]. Journal of Hydrodynamics, 1984(2):135-143.
[6]. 孙明根. 物体入水冲击力的研究[J]. 舰船科学技术, 1982(4):19-26.
SUN Ming-gen. Research on subject water-entry impact dynamics [J]. Ship Science and Technology, 1982(4):19-26.
[7]. 陈先富. 弹丸入水空穴的试验研究[J]. 爆炸与冲击, 1985(4):72-75.
CHEN Xian-fu. Experimental studies on the cavitation phenomena as a pellet entering water [J]. Explosion and Shock Waves, 1985(4):72-75.
[8]. 徐双喜, 吴卫国, 刘芳,等. 舰船舷侧防护液舱对爆炸破片的防御作用研究[J]. 爆炸与冲击, 2010, 30(4):395-400.
XU Shuang-xi, WU Wei-guo, LIU Fang, et al. Protective effect of guarding fluid cabin bulkhead under attacking by explosion fragments [J]. Explosion and Shock Waves, 2010, 30(4):395-400.
[9]. Varas D, Zaera R, López-Puente J. Numerical modelling of partially filled aircraft fuel tanks submitted to Hydrodynamic Ram [J]. Aerospace Science & Technology, 2012, 16(1):19-28.
[10]. 孔祥韶. 爆炸载荷及复合多层防护结构响应特性研究[D].武汉理工大学,2013.
KONG Xiang-shao. Research on the blast Loadings and the response of multi-layer protective structure [D]. Wuhan University of Technology, 2013.
[11]. 张婧,施兴华,王善. 水下接触爆炸作用下舰船防护结构中液舱影响仿真分析[J]. 天津大学学报,2008,10:1238-1244.
ZHANG Jing, SHI Xing-hua, WANG Shan. Numerical Simulation Analysis of Liquid Cabin of Ship Defensive Structure Subjected to Underwater Contact Explosions [J]. Journal of Tianjin University, 2008, 10:1238-1244.
[12]. 张婧,施兴华,盖京波,王善. 舰船防护结构穿甲后爆炸的数值仿真分析[J]. 哈尔滨工业大学学报,2009,08:202-206.
ZHANG Jing, SHI Xing-hua, GAI Jing-bo, WANG Shan. Numerical analysis of ship defensive structure under explosions after penetration [J]. Journal of Harbin Institute of Technology. 2009, 08:202-206.
[13]. 朱锡,梅志远,徐顺棋,冯文山. 高速破片侵彻舰用复合装甲模拟实验研究[J]. 兵工学报,2003,04:530-533.
ZHU Xi, MEI Zhi-yuan, XU Sun-qi, FENG Wen-shan. Experimental research on the penetration of high-velocity fragments in composite warship armor [J]. Acta Armamentarii, 2003, 04:530-533.
[14]. 沈晓乐,朱锡,侯海量,陈长海.高速破片侵彻防护液舱试验研究[J].中国舰船研究,2011,6(03):12-15.
SHEN Xiao-le, ZHU Xi, HOU Hai-liang, CHEN Chang-hai. Experimental Study on Penetration Properties of High Velocity Fragment into Safety Liquid Cabin [J]. Chinese Journal of Ship Research, 2011, 6(03):12-15.
[15]. 赵小龙, 马铁华, 徐鹏,等. 弹丸侵彻混凝土加速度信号测试及分析[J]. 爆炸与冲击, 2014, 34(3):347-353.
ZHAO Xiao-long, MA Tie-hua, XU Peng, et al. Acceleration signal test and analysis for projectile penetrating into concrete [J]. Explosion and Shock Waves, 2014, 34(3):347-353.
[16]. 柴传国, 皮爱国, 武海军,等. 卵形弹体侵彻混凝土开坑区侵彻阻力计算[J]. 爆炸与冲击, 2014, 34(5):630-635.
CHAI Chuan-guo, PI Ai-guo, WU Hai-jun, et al. A calculation of penetration resisitance during cratering for ogive-nose projectile into concrete [J]. Explosion and Shock Waves, 2014, 34(5):630-635.
[17]. 葛超, 董永香, 陆志超,等. 弹丸头部对斜侵彻弹道偏转影响研究[J]. 兵工学报, 2015, 36(2):255-262.
GE Chao, DONG Yong-xiang, LU Zhi-chao, et al. Ballistic deflection on oblique penetration of projectiles with different noses [J]. Acta Armamentarii, 2015, 36(2):255-262.
[18]. 杨文山. 水下接触爆炸舰船局部毁伤及防护机理[D].哈尔滨工程大学,2011.
YANG Wen-shan. Local damage and protection mechanism of warship underwater contact explosion [D]. Harbin Engineering University, 2011.
[19]. 明付仁. 水下近场爆炸对舰船结构瞬态流固耦合毁伤特性研究[D]. 哈尔滨工程大学, 2014.
MING Fu-ren. Damage characteristics of transient fluid-structure interaction of warship structures subjected to near-field underwater explosion [D]. Harbin Engineering University, 2014.
[20]. Benson D J, Okazawa S. Contact in a multi-material Eulerian finite element formulation [J]. Computer Methods in Applied Mechanics & Engineering, 2004, 193(39–41):4277-4298.

PDF(1333 KB)

Accesses

Citation

Detail

段落导航
相关文章

/