转子-叶片系统非线性振动和动态稳定性分析

李炳强1,马辉1,2,曾劲1,郭旭民1,崔璨1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (6) : 15-22.

PDF(1567 KB)
PDF(1567 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (6) : 15-22.
论文

转子-叶片系统非线性振动和动态稳定性分析

  • 李炳强1,马辉1,2,曾劲1,郭旭民1,崔璨1
作者信息 +

Nonlinear vibration and dynamic stability analysis of a rotor-blade system

  • LI Bingqiang1,MA Hui1,2,ZENG Jin1,GUO Xumin1,CUI Can1
Author information +
文章历史 +

摘要

以转子-叶片耦合系统作为研究对象,在主共振条件下,分析其振动响应和动态稳定性。基于广义 Hamilton原理建立系统的运动微分方程,采用Coleman变换和复平面变换用于系统自由度缩减并利用多尺度方法展开求解。研究了法向碰摩力、摩擦系数、阻尼、支承刚度、圆盘偏心量等因素对转子系统稳态响应的影响,并采用龙格-库塔数值积分方法验证多尺度摄动解的准确性。研究结果表明,较大的法向碰摩力会诱发系统产生失稳现象,此外,随着圆盘偏心量和支承刚度的增加,系统的跳跃频率和共振峰值增大,而阻尼的增加将提高系统的稳定性。

Abstract

The vibration response and dynamic stability of a coupled rotor-blade system were investigated under main resonances. The equations of motion were derived by using the Hamilton principle, and then the Coleman and complex transformations were adopted to obtain the reduced-order system. The nonlinear vibration and stability of the system were studied by the multiple scales method. The influences of normal rubbing force, friction coefficient, damping, support stiffness, mass eccentricity of the rotor on the steady state response of rotor-blade system were investigated. The accuracy of the multiple scales perturbation solution was verified by the Runge-Kutta numerical integration method. The results show that greater rubbing force will increase the response amplitude and make the system instable. In addition, increasing the damping will enhance the stability of the system. Along with the increasing of mass eccentricity and support stiffness, the jump-down frequency, the resonant peak, as well as the frequency range in which the system has unstable response will increase. It needs larger damping to guarantee the stability of the system.

关键词

主共振 / 转子-叶片系统 / 稳定性 / 非线性振动

Key words

main resonances / rotor-blade system / stability / nonlinear vibration

引用本文

导出引用
李炳强1,马辉1,2,曾劲1,郭旭民1,崔璨1. 转子-叶片系统非线性振动和动态稳定性分析[J]. 振动与冲击, 2019, 38(6): 15-22
LI Bingqiang1,MA Hui1,2,ZENG Jin1,GUO Xumin1,CUI Can1. Nonlinear vibration and dynamic stability analysis of a rotor-blade system[J]. Journal of Vibration and Shock, 2019, 38(6): 15-22

参考文献

[1] Khadem S E, Shahgholi M, Hosseini S A A. Primary resonances of a nonlinear in-extensional rotating shaft [J]. Mechanism and Machine Theory, 2010,45(8): 1067-1081.
[2] Khadem S E, Shahgholi M, Hosseini S A A. Two-mode combination resonances of an in-extensional rotating shaft with large amplitude [J]. Nonlinear Dynamics, 2011,65 (3): 217–233.
[3] Shahgholi M, Khadem S E. Resonances of an in- extensional asymmetrical spinning shaft with speed fluctuations [J]. Meccanica, 2013,48(1): 103–120.
[4] Chiu Y Z, Chen D Z. The coupled vibration in a rotating multi-disk rotor system [J]. International Journal of Mechanical Science, 2011,53(1):1-10.
[5] Wang L, Cao D Q, Huang W. Nonlinear coupled dynamics of flexible blade-rotor-bearing systems [J]. Tribology International, 2010, 43(4):759-778.
[6] Sanches L, Michon G, Berlioz A,et al. Instability zones for isotropic and anisotropic multi-bladed rotor configurations [J]. Mechanism and Machine Theory, 2011,46 (8):1054-1065.
[7] Bab S, Khadem S E, Abbsi A, et al. Dynamic stability and nonlinear vibration analysis of a rotor system with flexble/rigid blades [J]. Mechanism and Machine Theory, 2016,105: 633-653.
[8] Parent M O, Thouverez F. Phenomenological model for stability analysis of bladed rotor-to-stator contacts [J]. International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, 2016,10-15: 1-13.
[9] 高喆,秦卫阳,梁晓鹏,等. 碰摩转子-轴承系统的随机分叉与混沌特性研究[J].振动与冲击,2013,32(20):161-164.
GAO Zhe, QIN Wei-yang, Gao Qing, et al. Stochastic bifurcation and chaos analysis of a rub-impact rotor-bearing system [J]. Journal of Vibration and Shock, 2013,32(20):161-164.
[10] 陶海亮,潘波,高庆,等. 具有弹性静子的碰摩转子轴承系统非线性动力特性研究[J].振动与冲击,2013,32(15):197-202.
TAO Hai-liang, Pan Bo, Gao Qing, et al. Nonlinear dynamics of a rub-impact rotor supported by oil film bearings with an elastic stator [J]. Journal of Vibration and Shock,2013,32(15):197-202.
[11] 刘昕,张华彪,孙小磊,等. 叶轮转子碰摩的非线性动力学响应[J].振动与冲击,2016,35(20):172-177.
LIU Xin, ZHANG Hua-biao, SUN Xiao-lei, et al. Nonlinear dynamics on rubbing of a blade-rotor system [J]. Journal of Vibration and Shock, 2016, 35(20):172-177.
[12] Petrov E. Multiharmonic analysis of nonlinear whole engine dynamics with bladed disc-casing rubbing contacts [C]. ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, American Society of Mechanical Engineer.
[13] Petrov E. Analysis of bifurcations in multiharmonic analysis of nonlinear forced vibrations of gas-turbine engine structures with friction and gaps [C]. ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers.
[14] Sinha S K. Non-linear dynamic response of a rotating radial Timoshenko beam with periodic pulse loading at the free-end [J]. International Journal of Nonlinear Mechanics, 2015, 40:113-149.
[15] Sinha S K. Combined torsional-bending-axial dynamics of a twisted rotating cantilever Timoshenko beam with contact–impact loads at the free end [J]. Journal of Applied Mechanics, 2007, 74: 505-522.
[16] Turner K, Adams M, Dunn M. Simulation of engine blade tip-rub induced vibration [C]. Proceedings of GT2005, Ren-Tahoe, Nevada, USA, 2005.
[17] Turner K, Dunn M, Padova C. Airfoil deflection characteristics during rub events [J]. Journal of Turbomachinery, 2012, 134: 112-121.
[18] Kou H J, Yuan H Q. Rub-induced non-linear vibrations of a rotating large deflection plate [J]. International Journal of Nonlinear Mechanics, 204, 58:283-294.
[19] Ma H, Wang D, Tai X Y, et al. Vibration response analysis of blade–disk dovetail structure under blade tip rubbing condition [J]. Journal of Sound and Vibration, 2017, 23:252-271.
[20] Ma H, Yin F L, Wu Z Y, et al. Nonlinear vibration response analysis of a rotor-blade system with blade-tip rubbing [J]. Nonlinear Dynamics, 2016,84: 1225-1258.
[21] 袁惠群.转子动力学分析方法[M].北京:冶金工业出版社,2017.
YUAN Hui-qun. Analysis method of rotor dynamics [M]. Beijing: Metallurgical Industry Press, 2017.

PDF(1567 KB)

Accesses

Citation

Detail

段落导航
相关文章

/