为了降低金刚石圆锯片锯切噪声,提出一种适用于多约束条件下的圆锯片减振降噪动态拓扑优化设计方法。基于混合元胞自动机算法构建了低噪声圆锯片动态拓扑优化模型,以锯片减振降噪为设计目标,以锯切过程的锯切力、位移载荷响应为多约束条件,对优化模型进行计算分析,得到了满足刚度要求的最优开槽圆锯片,降低噪声5.1dB。依据优化结果制备了开槽锯片,通过锯切实验,验证了优化结果的正确性。该方法为低噪声圆锯片的动态拓扑优化设计提供了新思路。
Abstract
In order to reduce the sawing noise of diamond circular saw blades, a dynamic topological optimization design method for circular saw blades under muti-constraint conditions was proposed. Based on the hybrid cellular automata algorithm, the dynamic topological optimization model of a slotted circular saw was established, which takes the vibration and noise reduction of the saw blade as the design goal, and the load response and displacement response as muti constraints at given positions. By solving and analyzing the optimal model, the optimum form of the saw blade with the required rigidity was obtained. The noise is reduced by 5.1 dB.According to the optimization results, the slotted circular saw blade was prepared, and the correctness of the optimization results was verified by sawing experiments. The results provide a reference to the dynamic topology optimization design of low noise circular saw blades.
关键词
低噪声 /
金刚石圆锯片 /
混合元胞自动机 /
动态拓扑 /
优化设计
{{custom_keyword}} /
Key words
low noise /
diamond circular saw /
hybrid cellular automata /
dynamic topology /
optimization design
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Gau W H, Chen K N, Hwang Y L. Model updating and structural optimization of circular saw blades with internal slots[J]. Advances in Mechanical Engineering, 2015,6(1)
:1-11.
[2]姚涛,段国林,樊胜秋.基于遗传算法和NURBS曲线的开槽锯片减振优化设计[J].机械设计与制造,2013(05):70-
73.
Yao Tao, Duan Guolin, Fan Shengqiu. Optimal design to reduce vibration and noise of circular saw blade with slots based on genetic algorithm and nurbs curve[J]. Machinery Design & Manufacture, 2013(05):70-73.
[3]姚涛.开槽圆锯片减振降噪机理研究[D].天津:河北工业大学, 2009.
YAO Tao. Study on the mechanism of vibration reduction and noise reduction of slotted circular saw blade [D]. Tianjin: Hebei University of Technology, 2009.
[4]Tovar A, Patel N M, Niebur G L, et al. Topology optimization using a hybrid cellular automaton method with local control rules[J].Journal of Mechanical Design, 2006, 128(6):1205-1216.
[5]CA Soto. Structural topology optimization for crash worthiness[J].International journal of crashworthiness, 2004, 9(3): 277-283.
[6]王冠.铝合金薄壁梁结构轻量化设计及其变形行为的研究[D].长沙:湖南大学, 2013.
WANG Guan. Lightweight design and deformation behavior of aluminum thin-walled structure[D].Changsha
:Hunan university,2013.
[7]雷正保, 李丽红. 基于大客车碰撞分析的新型PVC护 栏梁板拓扑优化[J]. 振动与冲击, 2015,34(11):46-51.
LEI Zhengbao, LI Lihong. The beam topological optimization of new pvc barrier based on the passenger car crash analysis[J].Journal of vibration and shock
,2015,34(11):46-51.
[8]Ye H L,Wang W W, Chen N, et al. Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering function[J]. Acta Mechanica Sinica, 2016, 32(4): 649-658.
[9]Zuo W, Saitou K. Multi-material topology optimization using ordered simp interpolation[J]. Structural and Multidisciplinary Optimization, 2017, 55(2): 477-491.
[10]Forsberg J, Nilsson L.Topology optimization in crashworthiness design[J]. Structural & Multi-
disciplinary Optimization, 2006, 33(1):1-12.
[11]陈春强,陈前.电流变夹层振动控制和拓扑优化研究[J].振动与冲击,2016,35(21):137-142.
CHEN Chunqiang,CHEN Qian.Topological optimization and vibration control for an er sandwich plate[J].
Journal of vibration and shock,2016,35(21):137-142.
[12]贺红林,袁维东,夏自强,等.约束阻尼结构的改进准则法拓扑减振动力学优化[J].振动与冲击,2017,36(09):20-27.
HE Honglin, YUAN Weidong, XIA Ziqiang , et al.
Topology optimization of plates with constrained damping based on improved optimal criteria[J].
Journal of vibration and shock,2017,36(09):20-27.
[13]Fang J, Sun G, Qiu N, et al.On design optimization for structural crashworthiness and its state of the art[J]. Structural and Multidisciplinary Optimization, 2017, 55(3): 1091-1119.
[14]徐伟,张志飞,庾鲁思,等.附加自由阻尼板阻尼材料降噪拓扑优化[J].振动与冲击,2017,36(11):192-198.
XU Wei, ZHANG Zhifei, YU Lusi, et al.Topology optimization for noise reduction of structures with free damping[J].Journal of vibration and shock,2017,36(11):
192-198.
[15]何浩祥,王小兵,张小福.基于多目标拓扑优化的复合低屈服点钢阻尼器减震性能分析[J].振动与冲击,2018,37(08):158-166.
HE Haoxiang, Wang Xiaobing, Zhang Xiaofu. Seismic
performance of compound low yield point damper based on multi-target topology optimization[J]. Journal of vibration and shock,2018,37(08):158-166.
[16]Sun G, Liu T, Fang J, et al. Configurational optimization of multi-cell topologies for multiple oblique loads[J]. Structural and Multidisciplinary Optimization, 2018, 57(2): 469-488.
[17]Aulig N, Nutwell E, Menzel S, et al.Preference-based topology optimization for vehicle concept design with concurrent static and crash load cases[J]. Structural and Multidisciplinary Optimization, 2018, 57(1): 251-266.
[18]田永军,段国林,姚涛,等.基于多场耦合的锯片切割系统声辐射特性研究[J].机械强度, 2017, 39(4): 754-760.
TIAN Yongjun,DUAN Guolin,Yao Tao,et al.Research on acoustic radiation characteristic of saw blade cutting system based on multi-field coupling[J].Journal Of Mechanical Strength,2017, 39(4): 754-760.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}