化学爆炸等效单自由度结构体系抗力动力系数分析

耿少波1,2,葛培杰3,刘亚玲1,李洪1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (6) : 166-171.

PDF(881 KB)
PDF(881 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (6) : 166-171.
论文

化学爆炸等效单自由度结构体系抗力动力系数分析

  • 耿少波1,2,葛培杰3,刘亚玲1,李洪1
作者信息 +

Dynamical coefficient of resistance of an equivalent SDOF structural system under chemical explosion load

  • GENG Shaobo1,2,GE Peijie3,LIU Yaling1,LI Hong1
Author information +
文章历史 +

摘要

由化学爆炸荷载特点,选取了线性等效荷载与多项式曲线拟合衰减荷载两种函数类型,从等效单自由度微分方程入手,对比了线性等效荷载的等效作用时长、多项式曲线拟合衰减荷载的作用时长与结构进入塑性响应时间之间大小关系,推导出了弹塑性阶段抗力动力系数表达式。通过算例表明多项式曲线拟合衰减荷载可应用范围大于线性等效荷载,且可反映化学爆炸荷载形状调整参数对动力系数的影响程度,线性等效荷载求解简单应用简便,在延性比较小时其动力系数稍偏大对设计有利,在延性比较大且结构刚度较大时动力系数偏小且低于比例可达19%,对设计不利。

Abstract

Considering the chemical explosion characteristics, two types of load functions, the linear equivalent load and polynomial curve fitting attenuation load, were selected to solve an equivalent SDOF differential equation. The equivalent load duration based on the linear equivalent load and the load duration based on the polynomial curve fitting attenuation load were compared to determine the time of entering into plastic phase. The expression of the dynamical coefficient of resistance in the elastic-plastic phase was derived. Calculation examples show that the applicable range of the polynomial curve fitting attenuation load is greater than that of the linear equivalent load. The curve shape adjustment factor, which is a feature of polynomial curve fitting attenuation load, has some effect on the dynamical coefficient. The linear equivalent load is simpler in solving and easier in application. The dynamical coefficient based on the linear equivalent load is inclined to be somewhat greater in the case of low ductility ratio, which is beneficial for structural design. It is inclined to be smaller in the case of high ductility ratio and high structural rigidity. The result even is 19% lower than the result based on the polynomial curve fitting attenuation load. Obviously it is detrimental for structural design.

关键词

化学爆炸 / 动力系数 / 等效单自由度 / 等效静载 / 作用时长

Key words

chemical explosion / dynamical coefficient / equivalent SDOF / equivalent static load / load duration

引用本文

导出引用
耿少波1,2,葛培杰3,刘亚玲1,李洪1 . 化学爆炸等效单自由度结构体系抗力动力系数分析[J]. 振动与冲击, 2019, 38(6): 166-171
GENG Shaobo1,2,GE Peijie3,LIU Yaling1,LI Hong1. Dynamical coefficient of resistance of an equivalent SDOF structural system under chemical explosion load[J]. Journal of Vibration and Shock, 2019, 38(6): 166-171

参考文献

[1] ZHANG W. The Static Impact Analysis of a Blast Furnace Equipment Load on the Structure in Taiyuan[J]. Applied Mechanics & Materials, 2013, 275-277:1118-1122.
[2] STEVE Walker, BRIAN Corr, Vincent Tam, et al. Response Spectra for Explosion Resistant Design and Assessment[J]. 25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg: ASME, 2006.
[3] 方秦, 程国亮, 陈力. 爆炸荷载作用下承重柱的弹性动力响应分析[J]. 工程力学, 2013, 30(3):112-119.
FANG Qin,CHENG Guoliang,CHEN Li. The linear dynamic responses of columns subjected to blast loads[J]. Engineering Mechanics, 2013, 30(3):112-119.
[4] 穆朝民, 任辉启, 李永池,等. 爆室内爆炸流场演化与壳体动力响应研究[J]. 振动与冲击, 2009, 28(10):106-111.
MU Chaomin, REN Huiqi, LI Yongchi.Study on evolution of explosion flow field and dynamic response of shell in explosion chamber[J]. Journal Of Vibration and Shock, 2009, 28(10):106-111.
[5] 任秀敏. 冲击波作用下典型相控阵天线毁伤效应研究[D]. 北京理工大学, 2015.
[6] 杨科之, 王年桥, 等. 化爆条件下地面结构等效静载计算方法[J]. 防护工程, 2001:1-7.
YANG Kezhi, WANG Nianqiao. Equivalent static load calculation method for ground structures under chemical explosion[J].Protective engineering, 2001:1-7.
[7] 杨科之, 杨秀敏, 王年桥. 内爆荷载作用下结构等效静载计算方法[J]. 解放军理工大学学报:自然科学版, 2002, 3(4):31-33.
YANG Kezhi, YANG Xiumin, WANG Nianqiao. Equivalent Static Load Calculation Method of Structure Subjected to Internal Explosion[J]. Journal of PLA University of Science & Technology, 2002, 3(4):31-33.
[8] 边文凤, 吴忠友, 白光辉,等. 等效爆炸载荷下FRP船体结构的性能比较[J]. 工程力学, 2012(a01):176-179.
BIAN Wenfeng,Wu ZhongYou,Bai Guanghui,et al. Comparison on structural performance of frp hulls under equivalent explosion loading[J]. Engineering Mechanics, 2012(a01):176-179.
[9] 伍俊, 刘晶波, 杜义欣. 汽车炸弹爆炸下装配式防爆墙弹塑性动力计算与数值分析[J]. 防灾减灾工程学报, 2007, 27(4):394-400.
WU Jun, LIU Jingbo, DU Yixin. Elastic-plastic dynamic calculation and numerical analysis of assembling blast resistant wall under effect of vehicle bombs[J]. Journal of Disaster Prevention & Mitigation Engineering, 2007, 27(4):394-400.
[10] 颜海春, 方秦, 张亚栋,等. 化爆作用下人防工程口部封堵梁的计算与分析[J]. 解放军理工大学学报:自然科学版, 2001, 2(3):78-81.
YAN Haichun, FANG Qin, ZHANG Yadong, et al. Calculation and analysis of beam for blocking entrance in civil air-defense engineering under conventional weapon explosion[J]. Journal of PLA University of Science & Technology, 2001, 2(3):78-81.
[11] 杨涛春, 李国强, 王开强. 接触爆炸荷载下钢—混凝土组合梁简化设计方法研究[J]. 四川建筑科学研究, 2009, 35(6):1-4.
Yang Taochun, LI Guoqiang, WANG Kaiqiang. Research on the simplified design method for steel-concrete composite beam subjected to contact blast loading [J]. Sichuan Building Science, 2009, 35(6):1-4.
[12] CHEN H L, JIN F N, FAN H L. Elastic responses of underground circular arches considering dynamic soil-structure interaction:A theoretical analysis[J]. Acta Mechanica Sinica, 2013, 29(1):110-122.
[13] 陈俊杰, 高康华, 孙敖. 爆炸条件下结构超压-冲量曲线简化计算研究[J]. 振动与冲击, 2016, 35(13):224-232. CHEN Junjie, GAO Kanghua, SUN Ao. Simplified calculation method for pressure-impulse curve under blast load. Journal Of Vibration and Shock, 2016, 35(13): 224-232
[14] 李国豪. 工程结构抗爆动力学[M]. 上海科学技术出版社, 1989.
[15] 亨利奇. 爆炸动力学及其应用[M]. 科学出版社, 1987.
[16] Liu H, Torres D M, Agrawal A K, et al. Simplified blast-load effects on the column and bent beam of highway bridges [J]. Journal of Bridge Engineering, 2015, 20(10): 06015001―06015005.
 

PDF(881 KB)

Accesses

Citation

Detail

段落导航
相关文章

/