乏燃料容器坠落事故工况下核燃料厂房的安全性分析

程刚1,郭全全1,周耀1,马英2,蔡利建2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (6) : 206-211.

PDF(2093 KB)
PDF(2093 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (6) : 206-211.
论文

乏燃料容器坠落事故工况下核燃料厂房的安全性分析

  • 程刚1,郭全全1,周耀1,马英2,蔡利建2
作者信息 +

Safety analysis on a nuclear fuel plant building under the condition of a spent fuel container dropping accident

  • CHENG Gang1, GUO Quanquan1, ZHOU Yao1, MA Ying2, CAI Lijian2
Author information +
文章历史 +

摘要

根据核电厂的工艺布置,设计时需要考虑乏燃料容器可能发生的坠落事故对厂房结构的影响。为保证厂房整体结构和乏燃料水池的安全,在乏燃料容器可能的坠落位置铺设一定厚度的蒸压加气混凝土(AAC)砌体作为减振层是一种有效的防护措施。本文应用ANSYS/LS-DYNA对落锤冲击试验进行了有限元模拟,标定了AAC的材料模型参数,进而建立厂房的实体-分层壳有限元模型,模拟了乏燃料容器坠落对厂房整体结构的冲击动力响应,并从混凝土主应变、乏燃料水池跨中挠度以及楼层反应谱三个方面进行了安全性分析。结果表明:乏燃料容器坠落时,5m厚度的AAC砌体能很好地吸收冲击能量,保证厂房整体结构的安全,坠落冲击处楼板和侧墙出现局部损伤,临近的乏燃料水池应力水平很低,但在部分频段楼层反应谱超出设备的设计输入值,需对设备作进一步验算。

Abstract

According to the technological arrangement of a nuclear power plant, impact response effects of a fuel container dropping accident on the fuel plant building should be considered in the design. In order to ensure the safety of the nuclear power plant structure and the spent fuel pool, it is an effective measure to lay an AAC (autoclaved aerated concrete) masonry with a certain thickness to absorb the impact energy at the areas where the spent fuel container may drop. First, the hammer impact test of the AAC block was simulated to calibrate the parameters of the constitutive model MAT96 by using the ANSYS/LS-DYNA. Then,a FE(finite element)model of the whole fuel plant building was set up using solid elements and layered shell elements, and the impact response of the building under the condition of the spent fuel container dropping was analysed. Finally, from the aspects of the principal strain of concrete, the deflection of spent fuel pool and the floor response spectrum, a safety analysis of the whole fuel plant building was conducted. The results show that the AAC buffer layer with the thickness of 5 meters can effctively guarantee the safety and function of the building with slabs at the dropping position and surrounding walls slightly damaged and the spent fuel pool still well preserved. With regard to the equipments in the spent fuel pool, the floor impact response spectrum may exceed the design responce spectrum at certain frequency scope. So further special checking calculations of the equipments should be carried out.

关键词

核燃料厂房 / 坠落 / 冲击 / 减振 / 楼层反应谱

Key words

 nuclear fuel plant building / droping / impact / shock-absorbing / floor response spectrum

引用本文

导出引用
程刚1,郭全全1,周耀1,马英2,蔡利建2. 乏燃料容器坠落事故工况下核燃料厂房的安全性分析[J]. 振动与冲击, 2019, 38(6): 206-211
CHENG Gang1, GUO Quanquan1, ZHOU Yao1, MA Ying2, CAI Lijian2. Safety analysis on a nuclear fuel plant building under the condition of a spent fuel container dropping accident[J]. Journal of Vibration and Shock, 2019, 38(6): 206-211

参考文献

[1] 张涛,方秦,吴昊等.飞机对核安全壳撞击破坏效应的数值模拟[J]. 解放军理工大学报,2014, 15(4):335-340
ZHANG Tao,FANG Qin,WU Hao,et al. Numerical simulation on response and damage of nuclear containment under aircraft impact [J]. Journal of the PLA university of science and technology, 2014, 15(4):335-340
[2] 朱秀云,潘蓉.基于荷载时程分析法的商用飞机撞击钢板混凝土结构安全壳的有限元分析[J].振动与冲击,2015,34(1): 1-5
ZHU Xiu Yun,PAN Rong. FEM analysis of steel plate concrete containment against commercial aircraft impact based on force time-history analysis method[J].journal of vibration and shork, 2015,34(1):1-5
[3] 陆新征,江见鲸. 世界贸易中心飞机撞击后倒塌过程的仿真分析[J]. 土木工程学报,2001,34(06):8-10.
LU Xin Zheng,JIANG Jian Jing. Simulation analysis of the collapse of the world trade center plane crash [J], China Civil Engineering Journal,2001, 34(06):8-10
[4] 宋晓滨,张伟平,顾祥林. 重物高空坠落撞击多层钢筋混凝土楼板的仿真计算分析[J]. 结构工程师,2002,(04):23-28.
SONG Xiao Bin,ZHANG Wei Ping,GU Xiang Lin,et al. Simula tion Analysis of Responses for Reinforced Concrete Beam- Slab System Impacted by the Falling Object from High Altitude[J]. Structural Engineer, 2002,(04):23-28.
[5] 张斌,许金余,李乐等. 泡沫混凝土回填层在地下复合结构中的抗爆特性分析[J]. 四川建筑科学研究,2010,36(06): 135-138
ZHANG Bin,XU Jing Yu,LI Le,et al. Analysis of antidetonational property of foam concrete back fill layers in Underground compound structure[J] . Sichuan Building Scienc, 2010,36 (06): 135-138
[6] 何思明,沈均,吴永. 滚石冲击荷载下棚洞结构动力响应[J]. 岩土力学,2011,32(03):781-788.
HE Si Ming,SHEN Jun,WU Yong. Rock shed dynamic response to impact of rock-fall[J]. Rock and Soil Mechanics, 2011,32(03):781-788.
[7]Zhan Li, Qin Fang. Study of autoclaved aerated concrete masonry walls under vented gas explosions [J]. Engineering Structures.2017;141:444-460
[8] 朱秀云,潘蓉,林皋,等. 基于荷载时程分析法的钢筋混凝土与钢板混凝土墙冲击响应对比分析[J]. 振动与冲击,2014,33(22):172-177
ZHU Xiu Yun,PAN Rong,LIN Gao,et al. Comparative analysis of impact response of walls with reinforced concrete and steel plate concrete based on force time-history analysis method [J]. Journal of Vibration and shork,2014,33(22):172-177
[9] Comite Euro-International du Beton,CEB-FIP model code 1990 [M]. Redwood Books, Trowbri dge, Wiltshire,UK,1993.
[10] Amit H. Varma. Design of composite SC walls to prevent perforation from missile impact[J]. International Journal of Impact Engineering, 75(2015):75-87
[11] 胡俊,王平,丁克伟. 含缓冲层隧道结构抗爆性能研究[J]. 公路交通科技,2015,32(09):98-102
HU Jun,WANG Ping,DING Ke Wei.Research of Antiknock Performance of Tunnel with Buffer Layer[J]. Journal of Highway and Transportation Research and Development, 2015,32(09):98-102
[12] 孙琦,周军,林鹏.基于LS-DYNA的弹体撞水过程流固耦合动力分析[J].系统仿真学报,2010,22(06):1498-1501
SUN Qi, ZHOU Jun, LIN Peng. Dynamic analysis of fluid-solid coupling projectile collision based on LS-DYNA[J]. Journal of system simulation,2010,22(06):1498-1501
 
[13] LS-DYNA keyword user,s manual[Z].Version 971,LSTC, March. 2013.
[14] 刘红石. Rayleigh阻尼比例系数的确定[J]. 噪声与振动控制,1999,(06):21-22
LIU Hong Shi. Research of Rayleigh Damping scale factors[J]. Noise and Vibration Control,1999,(06):21-22

PDF(2093 KB)

389

Accesses

0

Citation

Detail

段落导航
相关文章

/