建立了双轮共转起落架的摆振非线性动力学模型,并采用分岔计算方法对模型进行了稳定性求解,形成了一套适用于摆振分析的分岔计算方法。在此基础上,对轮间距和双轮共转对摆振稳定性的影响进行了分析。轮间距的增加能有效减小侧向摆振的发生区域,对扭转摆振区域则相反,且可能引起摆振区域拓扑结构的改变。双轮共转仅在轮间距较大的情况下,对侧向摆振起到抑制作用。
Abstract
A non-linear dynamics model was developed to study the shimmy oscillations of an aircraft nose landing gear with corotating wheels. A bifurcation analysis was applied in dealing with the model, and the details of the procedure were described. The effects of wheel-distance and corotating wheels were studied based on the model. It is concluded that the longer wheel-distance means more stability against lateral shimmy and less stability against torsional shimmy, and may lead to the change in topological structure of shimmy areas. Corotating wheels reduce the area of lateral shimmy only when with long wheel-distance.
关键词
起落架 /
前轮摆振 /
分岔分析 /
轮间距 /
双轮共转
{{custom_keyword}} /
Key words
landing gear /
shimmy /
bifurcation analysis /
wheel-distance /
coratating wheels
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 诸德培. 摆振理论及防摆措施 [M]. 北京: 国防工业出版社, 1984.
[2] T.D. Burton. Describing Function Analysis of Nonlinear Nose Gear Shimmy [J]. American Society of Mechanical Engineers 1981:
[3] Pritchard Jocelyn I. An Overview of Landing Gear Dynamics [R]. NASA/TM, 1999.
[4] B. von Schlippe, R. Dietrich. Shimmying of a Pneumatic Wheel [R]. NACA TM 1365, 1947.
[5] J. Moreland W. Landing Gear Vibration [R]. AF Technical Report No. 6590, 1951.
[6] F. Smiley R. Correlation, Evaluation, and Extension of Linearized Theories for Tyre Motion and Wheel Shimmy [R]. NACA 1299, 1957.
[7] Boeckh. Determination of the Elastic Constants of Airplane Tires [R]. 1954.
[8] J. Yager T. Aircraft Nose Gear Shimmy Studies [J]. SAE Technical Papers, 1993, 931401:
[9] T. Gordon J., C. Merchant H. An Asymptotic Method for Predicting Amplitudes of Nonlinear Wheel Shimmy [J]. Journal of Aircraft, 1978, 15(3): 155-159.
[10] J.T. Gordon. A Perturbation Analysis of Nonlinear Wheel Shimmy, 2001 [C]. Gastrointestinal Endoscopy ,2013 , 79 (5) :657-665.
[11] S Norman. Aircraft Landing Gear design: Principles and Practices [M]. Washington, D.C.: American Institute of Aeronautics and Astronautics, 1998.
[12] X. Zhou J., L. Zhang. Incremental Harmonic Balance Method for Predicting Amplitudes of a Multi-d.o.f. Non-linear Wheel Shimmy System With Combined Coulomb and Quadratic Damping [J]. Journal of Sound and Vibration, 2005, 279(1-2): 403-416.
[13] Phanikrishna Thota, Bernd Krauskopf, Mark Lowenberg. Interaction of Torsion and Lateral Bending in Aircraft Nose Landing Gear Shimmy [J]. Nonlinear Dynamics, 2008, 57(3): 455-467.
[14] Phanikrishna Thota, Bernd Krauskopf, Mark Lowenberg. Bifurcation Analysis of Nose-Landing-Gear Shimmy with Lateral and Longitudinal Bending [J]. Journal of Aircraft, 2010, 47(1): 87-95.
[15] Phanikrishna Thota, Bernd Krauskopf, Mark Lowenberg. Influence of Tire Inflation Pressure on Nose Landing Gear Shimmy [J]. Journal of Aircraft, 2010, 47(5): 1697-1706.
[16] Q CAI J. Effect of dual co-rotation wheels configuration on aircraft shimmy [J]. Journal of VibroEngineering, 2016, 17(8): 4421-4431.
[17] F. FENG. Effect of Torsional Damping on Aircraft Nose Landing-Gear Shimmy [J]. Journal of Aircraft, 2015, 52(2): 561-568.
[18] 王学军. 飞机前轮摆振稳定性分析 [D]. 南京: 南京航空航天大学, 1991.
[19] Phanikrishna Thota, Bernd Krauskopf, Mark Lowenberg. Multi-parameter Bifurcation Study of Shimmy Oscillations in a Dual-wheel Aircraft Nose Landing Gear [J]. Nonlinear Dynamics, 2012, 70(2): 1675-1688.
[20] 冯飞. 起落架非线性摆振分岔分析 [D]. 南京: 南京航空航天大学, 2014.
[21] Kuznetsov Yuri A. Elements of Applied Bifurcation Theory [M]. 1997.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}