水下超声速气体射流的初始流动特性研究

张焕好,郭则庆,王瑞琦,陈志华,黄振贵

振动与冲击 ›› 2019, Vol. 38 ›› Issue (6) : 88-93.

PDF(1184 KB)
PDF(1184 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (6) : 88-93.
论文

水下超声速气体射流的初始流动特性研究

  • 张焕好,郭则庆,王瑞琦,陈志华,黄振贵
作者信息 +

Initial flow characteristics of an underwater supersonic gas jet

  • ZHANG Huanhao,GUO Zeqing,WANG Ruiqi,CHEN Zhihua,HUANG Zhengui
Author information +
文章历史 +

摘要

为研究水下发射过程中高温高压火药燃气喷射进入液相水过程的流体形态变化与流动特性,采用Mixture多相流模型与蒸发与凝结(Evaporation-condensation)模型建立了二维轴对称水下超声速气体射流的数值计算模型并进行了相关的数值模拟,得到水下超声速气体射流的初始流动结构。数值结果表明,超声速气体与水介质的强撞击会在气液界面上形成一个强压缩区,且连续撞击形成的压力波反传,使喷管出口射流核心区流场出现周期性脉动。另外,因气液界面上的强剪切作用,而在气液混合区内形成复杂的小激波结构,小激波结构的出现加速了气液界面的失稳,从而促进了气液掺混效应。另外,在气泡内会形成典型的欠膨胀射流结构,因而气泡内的流动特征与单相超声速气体射流情况类似。

Abstract

To investigate the evolution and the characteristics of flow structures during the high-pressure and high-temperature propellant gases injecting into water in the launching process of an underwater gun, a two-dimensional axis-symmetric model of the underwater supersonic gas jet was established via the Mixture model and Evaporation-condensation model. A relative numerical simulation was conducted and the initial flow structure of the underwater supersonic gas jet was obtained. The numerical results illustrate that a highly pressed region forms on the gas-liquid interface due to the strong impact between the supersonic gas and water, and the continual impact generates the reflection of the pressure wave, which causes periodic impulses in the core flow region at the nozzle’s exit. In addition, complex shocklets structures form in the gas-liquid hybrid region due to the strong shear effect on the gas-liquid interface, which accelerates the instability of the gas-liquid interface and promotes the gas-liquid mixing effect. Moreover, the typical underexpanded jet structure forms inside the bubble, whose flow characteristic is similar to that of a single phase supersonic gas jet.

关键词

水下超声速气体射流 / 气液两相流 / 气泡运动 / 小激波 / 数值模拟

Key words

underwater supersonic gas jet / gas-liquid flow / bubble motion / shocklets / numerical simulation

引用本文

导出引用
张焕好,郭则庆,王瑞琦,陈志华,黄振贵. 水下超声速气体射流的初始流动特性研究[J]. 振动与冲击, 2019, 38(6): 88-93
ZHANG Huanhao,GUO Zeqing,WANG Ruiqi,CHEN Zhihua,HUANG Zhengui. Initial flow characteristics of an underwater supersonic gas jet[J]. Journal of Vibration and Shock, 2019, 38(6): 88-93

参考文献

[1] Hoefele E O, Brimacombe J K. Flow regimes in submerged gas injection[J]. Metallurgical Transactions B, 1979, (10B): 631-648.
[2] Aoki T, Masuda S, Hatano A. Characteristics of submerged gas jets and a new type bottom blowing tuyere[D]. Newcastle: Injection Phenomena in Extraction and Refining, 1982.
[3] Loth E, Faeth G M. Structure of underexpanded round air jets submerged in water[J]. International Journal of Multiphase Flow, 1989, 15(4): 589-603.
[4] Li X, Bhunia A. Themporal instability of plane gas sheets in a viscous liquid medium[J]. Physics of Fluids, 1996, 8(1):103-111.
[5] Subramaniam K, Parthasarathy R N, Chiang K M. Three-dimensional temporal instability of compressible gas jets injected in liquids[J]. AIAA Journal, 1999, 37(2): 202-207.
[6] Nguyen V, Evans M. Computational fluid dynamics modeling of gas jets impinging onto liquid pools[J]. Applied Mathematical Modeling, 2005, (30): 1472-1484.
[7] 唐云龙, 李世鹏, 刘筑, 等. 水下火箭水平射流初期特征研究[J]. 物理学报, 2015, 64(23): 234702.
TANG Yun-Long, LI Shi-Peng, LIU Zhu, et al. Horizontal jet characteristics of an underwater solid rocket motor at the beginning of working[J]. Acta Physics Sinica, 2015, 64(23): 234702.
[8] 王超, 施红辉, 汪剑锋. 液体中可压缩气体射流的瞬态特性[J]. 化工学报, 2016, 67(6): 2292-2299.
WANG Chao, SHI Hong-hui, WANG Jian-feng. Transient characteristics of compressible gas jet in liquid[J]. CIESC Journal, 2016, 67(6): 2292-2299.
[9] 施红辉, 汪剑锋, 陈帅, 等. 水下超声速气体射流初期流场特性的实验研究[J]. 中国科学技术大学学报, 2014, 44(3): 233-237.
SHI Hong-hui,WANG Jian-feng,CHEN Shuai, et al. Experimental study on flow characteristics at the initial injection stage of underwater supersonic gas jets[J]. Journal of University of Science and Technology of China, 2014, 44(3): 233-237.
[10] 施红辉, 王柏懿, 戴振卿. 水下超声速气体射流的力学机制研究[J]. 中国科学(G辑), 2010, 53(3): 527-352.
SHI Hong-hui, WANG Bai-yi, DAI Zhen-qing. Mechanical mechanism of underwater supersonic gas jets[J]. Scientia Sinica (Seri G), 2010, 53(3): 527-352.
[11] 施红辉, 王柏彭, 等. 水下超音速气体射流[R]. 第七届全国水动力学学术会议暨第十九届全国水动力学研讨会文集(七册), 2005: 75-81.
SHI Hong-hui, WANG Bai-yi, QI Lou-xi, et al. A submerged supersonic gas jet[R]. 7th Hydrodynamics conference and 19th Hydrodynamics Symposium, 2005: 75-81. (in Chinese)
[12] 王乐勤, 郝宗睿, 吴大转. 水下气体射流初期流场的数值研究[J]. 工程热物理学报, 2009, 30(7): 1132-1135.
WANG Le-qing, HAO Zong-rui, WU Da-zhuan. Numerical simulation of initial flow field of underwater gas jet[J]. Journal of Engineering Thermophysics, 2009, 30(7): 1132-1135.
[13] 徐小强. 水下燃气喷管高速射流问题研究[D]. 浙江大学硕士学位论文, 2004.
Xu Xiao-qiang. Investigation of the underwater high-speed gas jet[D]. Zhejiang Science Technology University, 2004.
[14] 徐琴华. 水下发射燃气射流初期流场的数值研究[D]. 哈尔滨工程大学, 2007.
XU Qin-hua. Numerical study on the initial stage flow of gas jet for launch underwater[D]. Harbin Engineering University, 2007.
[15] 汤龙生, 刘宇, 吴智锋, 等. 水下超声速燃气射流气泡的生长及压力波传播特性实验研究[J]. 推进技术, 2011, 32(3): 417-420.
TANG Long-sheng, LIU Yu, WU Zhi-feng, et al. Experimental study on characteristic of bubble growth and pressure wave propagation by supersonic gas jets under water[J]. Journal of Propulsion Technology, 2011, 32(3): 417-420.
[16] 刘明, 王柏懿, 戚隆溪, 等. 充液腔体中气体射流冲击压力的实验测量[J]. 力学与实践, 2007, 29(4): 29-32.
LIU Ming, WANG Bai-yi, QI Long-xi, et al. Pressure Measurements of gas impinging jets in a cylindrical cavity filled with water[J]. Journal of Mechanics and Practice, 2007, 29(4): 29-32.
[17] 胡志涛, 余永刚. 圆形和矩形燃气射流在受限液体中扩展特性的对比研究[J]. 推进技术, 2016, 37(9): 1637-1648.
HU Zhi-tao,YU Yong-gang. Comparative study on expansion characteristics of round and rectangular combustion-gas jets in confined liquid medium[J]. Journal of Propulsion Technology, 2016, 37(9): 1637-1648.
[18] 周良梁, 余永刚, 刘东尧, 等. 水下火炮气幕式发射过程中燃气射流与液体工质相互作用的特性[J]. 兵工学报, 2016, 37(8): 1373-1378.
ZHOU Liang-liang, YU Yong-gang, LIU Dong-yao, et al. Research on gas-liquid interaction characteristics during the gas curtain launching process of underwater gun[J]. Acta Armamentarii, 2016, 37(8): 1373-1378.
[19] Chan L, Chin C, Soria J, et al. Large eddy simulation and Reynolds-averaged Navier-Stokes calculations of supersonic impinging jets at varying nozzle-to-wall distances and impinging angles[J]. International Journal of Heat and Fluid Flow, 2014, 47: 31-41.
[20] 胡俊, 姜建玉, 于勇, 等. 环形喷管喷口气泡演化的实验研究[J]. 力学学报, 2016, 48(1): 86-94.
HU Jun, JIANG Jian-yu, YU Yong, et al. Experimental investigation of bubble evolution on annular nozzle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 86-94.
[21] 张焕好, 陈志华, 黄振贵, 等. 超声速平面混合层小激波的形成与演变[J]. 计算力学学报, 2012, (05): 772-778.
ZHANG Huan-hao, CHEN Zhi-hua, HUANG Zhen-gui, et al. The generation and evolution of shocklets in a supersonic plane mixing layer[J]. Chinese Journal of Computational Mechanics, 2012, 29(05): 772-778.
[22] Chin C, Li M, Harking T, et al. Investigation of the flow strucutres in supersonic free and impinging jet flows[J]. Journal of Fluids Engineering, 2013, 135(3): 031201.
[23] Zhang H H, Chen Z H, Li B M, et al. The secondary vortex rings of a supersonic underexpanded circular jet with low pressure ratio[J]. European Journal of Mechanics - B/Fluids, 2014, 46: 172-180.

PDF(1184 KB)

Accesses

Citation

Detail

段落导航
相关文章

/