本文研究了不同多股簧响应模型对火炮自动机运行性能的影响。基于多股簧的静态、动态试验结果,使用参数辨识算法识别了多股簧双折线模型、修正归一化Bouc-Wen模型参数(BW模型),并提出计及冲击端速度的广义修正归一化Bouc-Wen模型(广义BW模型)。基于气体动力学理论和热力学理论,建立了考虑身管和导气室热量散失的某导气式自动机的内弹道/导气装置耦合方程组。通过建立自动机有限元模型并将上述弹簧响应模型和耦合方程组代入计算,分析了不同弹簧响应模型对自动机传动框速度、位移和理论射速的影响。计算结果表明,双折线模型由于迟滞耗能过大、恢复力较低不足以使自动机传动框及时复进到位;BW模型和广义BW模型的自动机运动特性和理论射速比较符合实际;使用广义BW模型计算出的弹簧力大约是BW模型的1.336倍,因此其理论射速高于BW模型。
Abstract
Influences of different response models for multi-strand wire helical spring on operation performance of a machine gun automatic mechanism were investigated. Based on static and dynamic test results of a multi-strand spring,parameters of its double broken line model and modified normalized Bouc-Wen model (BW model) were identified with the parametric identification algorithm,and a generalized BW model for the spring considering impact velocity was also proposed. Based on the aerodynamic theory and the thermodynamic one,the interior ballistic-gas operated device coupled equations for a gas operated automatic mechanism considering heat loss of body tube and gas operated device were derived. A finite element dynamic model for the automatic mechanism was established including the 3 spring response models mentioned above,respectively and the derived interior ballistic-gas operated device coupled equations. Through computation with the finite model,influences of different spring response models on drive box’s speed,displacement and theoretical firing rate were analyzed. The results showed that the double broken line model can’t drive the drive box to its starting place in time due to its excessive hysteretic dissipation energy and lower restoring force; motion features of the automatic mechanism and its theoretical firing rate are more in line with reality using BW model and the generalized BW one; the spring force calculated with the generalized BW model is about 1.336 times of that with BW one,so the theoretical firing rate calculated with the generalized BW model is higher than that with BW one.
关键词
多股簧 /
非线性响应模型 /
火炮自动机 /
导气装置 /
有限元分析
{{custom_keyword}} /
Key words
stranded wire helical spring /
nonlinear response model /
machine gun automatic mechanism /
gas-operated device /
finite element analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵昱. 多股螺旋弹簧响应特性的理论研究与实践[D]. 重庆大学, 2015: 47-75.
Yu Zhao. Research on the response characteristics of stranded wire helical springs and practice[D].Chongqing: Chongqing University, 2015: 47-75.
[2] 徐达, 韩振飞, 苏忠亭等. 小口径自动炮复进簧对发射过程动态特性影响仿真研究[J]. 装甲兵工程学院学报, 2013,27 (03): 51-53.
XU Da, HAN Zhen-fei, SU Zhong-ting, et al. Simulation of Recoil Spring Influence on Firing Process Dynamic Characteristics of Small Caliber Automatic Gun[J].Journal of Academy of Armored Force Engineering, 2013, 27(3): 51-53.
[3] Zhao Y, Wang S, Zhou J, et al. Three-stage method for identifying the dynamic model parameters of stranded wire helical springs[J]. Chinese Journal of Mechanical Engineering, 2014, 28(1): 197-207.
[4] 冉景禄, 徐诚, 赵彦峻. 导气式自动武器变质量热力学计算模型研究[J]. 兵工学报, 2011, 32(04): 408-413.
RAN Jing-lu, XU Cheng, ZHAO Yan-jun. Gas-operated Automatic Weapon Variable-mass Thermodynamics Calculation Model[J].ACTA ARMAMENTARII, 2011, 32(4): 408-413.
[5] 宋杰, 廖振强, 李佳圣等. 导气与枪管浮动混合式自动机动力学特性研究[J]. 兵工学报, 2014, 35(06): 753-761.
SONG Jie, LIAO Zhen-qiang, LI Jia-sheng, et al. Dynamics Characteristics of Automatic Mechanism for Gasn Operated and Floating Barrel Operated Automatic Action[J].ACTA ARMAMENTARII, 2014, 35(6): 753-761.
[6] 王时龙, 雷松, 周杰等. 两端并圈多股簧的冲击响应研究[J].振动与冲击, 2011, 30(3): 64-68.
Wang Shi-long, Lei Song, Zhou Jie, et al. Impact response of stranded wires helical springs with closed ends [J].JOURNAL OF VIBRATION AND SHOCK, 2011, 30(3): 64-68.
[7] 王时龙, 田波, 赵昱等. 基于摄动法的多股簧冲击载荷改进模型[J]. 机械工程学报, 2015, 51(07): 85-90.
WANG Shi-long, TIAN Bo, ZHAO Yu, et al. Improved Shock Load Model of Stranded Wires Helical Springs Based on Perturbation Method[J].JOURNAL OF MECHANICAL ENGINEERING, 2015, 51(7): 85-90.
[8] 田波. 冲击载荷作用下多股簧动态特性试验研究[D]. 重庆大学, 2014: 48-56.
Tian Bo. Experimental Study of Dynamic Characteristics of Stranded Wire Helical Springs under Shock Load [D].Chongqing: Chongqing University, 2014: 48-56.
[9] Ikhouane F, Gomis-Bellmunt O. A limit cycle approach for the parametric identification of hysteretic systems[J]. Systems & Control Letters, 2008, 57(8): 663-669.
[10] Wu M, Smyth A. Real-time parameter estimation for degrading and pinching hysteretic models[J]. International Journal of Non-Linear Mechanics, 2008, 43(9): 822-833.
[11] Zhang J, Xia P. An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models[J]. Journal of Sound and Vibration, 2017, 389: 153-167.
[12] Quaranta G, Marano G C, Greco R, et al. Parametric identification of seismic isolators using differential evolution and particle swarm optimization[J]. Applied Soft Computing, 2014, 22: 458-464.
[13] Meng Y, Gao S, Zhong Y, et al. Covariance matching based adaptive unscented Kalman filter for direct filtering in INS/GNSS integration[J]. Acta Astronautica, 2016, 120: 171-181.
[14] Shabbouei Hagh Y, Mohammadi Asl R, Cocquempot V. A hybrid robust fault tolerant control based on adaptive joint unscented Kalman filter[J]. ISA Transactions, 2017, 66: 262-274.
[15] Wang W, Wang H, Sun H, et al. Using opposition-based learning to enhance differential evolution: A comparative study[C]. 2016 IEEE Congress on Evolutionary Computation (CEC), 2016: 71-77.
[16] 何志强, 黄守仁, 李载弘. 航空自动武器设计手册[M].北京: 国防工业出版社, 1991: 190-216.
He Zhi-qiang, Huang Shou-ren, Li Zai-hong. Handbook for Airborne Automatic Weapon Design[M].Beijing: National Defense Industry Press, 1991: 190-216. (in Chinese )
[17] 王娟. 基于虚拟样机技术的航炮系统动力学仿真[D].西安: 西北工业大学, 2004: 13-30.
Wang Juan. Virtual Prototyping Analysis and Dynamics Simulation of Gun Systems[D].Xi'an: Northwestern Polytechnical University , 2004: 13-30.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}