开展渡槽排架单向单输入多输出SIMO法、双向多输入多输出MIMO法人工激励模态试验,选用特征系统实现法识别纵向、横向、双向模态参数,结果表明,单向SIMO法稳定图绝大多数谱峰明显、模态识别效果较好,纵向模态比横向丰富、识别效果好;双向MIMO法纵向谱峰大多数明显,横向除双向第2阶(即横向第1阶)谱峰明显外,其他基本很小,尤其是横向模态频率接近纵向时,甚至无谱峰,只识别出纵向模态;排架结构以排架柱弯曲振动为主,纵向低阶、高阶模态横梁分别以平动或转动刚体振动、弯曲振动为主,横向模态横梁为平动或不动刚体振动;两种方法识别出的模态频率误差较小,模态阻尼在正常范围,但双向MIMO法部分横向模态未能准确识别。从识别精度、试验工作量及操作便捷性而言,排架结构人工激励模态试验选择单向SIMO法优于双向MIMO法。
Abstract
Modal tests with SIMO method in a single direction and MIMO method in bi-direction under artificial excitation were conducted for an aqueduct bent structure. Longitudinal,transverse and bi-directional modal parameters were identified with the eigen-system realization algorithm. The results showed that most spectral peaks of stabilization diagrams are obvious using SIMO method,modal identification effects are better,longitudinal modes are richer than transverse modes; the most spectral peaks of longitudinal modes are obvious using MIMO method,but those of transverse modes are small except for the bidirectional second order mode,i.e.,the transverse first order one; if transverse modes’ frequencies are close to those of longitudinal modes,they have no spectral peaks,only longitudinal modes are identified; bent structure’s modes mainly are its column’s bending vibrations; its beam’s lower and higher order longitudinal modes mainly are translation vibration or rotating rigid body one and bending one,respectively; the beam’s transverse modes are translation vibration or stationary rigid body one; modal frequencies identified using SIMO and MIMO methods have small errors; identified modal damping is within a normal range; partial transverse modes can’t be correctly identified using MIMO method; the SIMO method in a single direction is better than the MIMO method in bi-direction for bent structures’ modal tests under artificial excitation,the former has a higher identification accuracy,costs less time and is easy to operate.
关键词
渡槽排架结构 /
模态试验 /
特征系统实现法 /
MIMO法
{{custom_keyword}} /
Key words
aqueduct bent structure /
modal test /
eigensystem realization algorithm /
MIMO method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 顾培英,黄勤红,邓昌,等. 基于重整化群的水工混凝土结构整体破坏概率研究[J]. 水利水运工程学报,2010(4):1-5.(GU Peiying, HUANG Qinhong, DENG Chang, et al. Damaged probability of concrete for hydraulic structure based on renormalization group theory[J]. Hydro-science and Engineering, 2010,(4):1-5. (in Chinese))
[2] GU P, DENG C, TANG L. Determination of local damage probability in concrete structure[C]// 2012 International Conference on Modern Hydraulic Engineering. Nanjing, China: China Association of Hydraulic Engineering Education, 2012:489-493.
[3] GU Peiying, DENG Chang, ZHANG Daosheng, et al. Probability of overall collapse for concrete gravity dam based on renormalization group theory of unequal probability unit[C]// The 2nd SREE Conference on Hydraulic Engineering (CHE 2013). London: CRC Press,2014:135-140.
[4] 顾培英,邓昌,汤雷. 基于重整化群方法的三棱柱单元整体破坏概率模型[J]. 水利水电科技进展,2014,34(3):16-19,80. (GU Peiying, DENG Chang, TANG Lei. A model of overall damage probability of triangular prism unit based on renormalization group method[J]. Advances in Science and Technology of Water Resources,2014, 34(3):16-19,80. (in Chinese))
[5] 顾培英,邓昌,汤雷. 基于重整化群有限原胞级整体安全性分级评价[J]. 河海大学学报:自然科学版,2014,42(4):355-360. (GU Peiying, DENG Chang, TANG Lei. Safety classification evaluation of an overall structure based on limited primitive cell level using renormalization group theory[J]. Journal of Hohai University:Natural Sciences, 2014,42(4):355-360. (in Chinese))
[6] 顾培英,邓昌,肖仕燕,等. 基于二维逾渗相变重整化群的混凝土重力坝断面破坏评价[J]. 水利水电科技进展, 2015, 35(6):31-36, 85. (GU Peiying, DENG Chang, XIAO Shiyan, et al. Development of cross-section damage based on two-dimensional percolation transition with renormalization group theory for concrete gravity dam[J]. Advances in Science and Technology of Water Resources, 2015, 35(6):31-36, 85. (in Chinese))
[7] 张敏,黄俐,李文雄,等. 大型结构模态参数识别研究[J]. 建筑科学与工程学报,2013, 30(2):49-54,75. (ZHANG Min,HUANG Li,LI Wenxiong, et al. Research on modal parameter identification 0n large-scale structure[J]. Journal of Architecture and Civil Engineering,2013, 30(2):49-54,75. (in Chinese))
[8] 顾培英,邓昌,吴福生. 结构模态分析及其损伤诊断[M]. 南京: 东南大学出版社, 2008:1-128.
[9] 曹树谦,张文德,萧龙翔. 振动结构模态分析:理论、实验与应用[M]. 天津: 天津大学出版社, 2001:165-173.
[10] 刘进明,应怀樵,章关永. OMA模态参数的优化及盲分析技术探讨[J]. 振动、测试与诊,2012, 32(6):1016-1020. (LIU Jinming,YING Huaiqiao,ZHANG Guanyong. Optimization of oma parameters and blind analysis [J]. Journal of Vibration,Measurement&Diagnosis, 2012, 32(6):1016-1020. (in Chinese))
[11] 孙正华,李兆霞,陈鸿天,等. 大跨斜拉桥基于结构模拟的环境振动测点优化布置[J]. 应用科学学报,2007, 25(4):411-417. (SUN Zhenghua,LI Zhaoxia,CHAN Hongtin,et al. Optimal configuration of ambient vibration sensors based on structural modeling for long cable-stayed bridge[J]. Journal of Applied Sciences, 2007, 25(4):411-417. (in Chinese))
[12] CARNE T G,DOHMANN C R.A modal test design strategy for model correlation[C]// In Bathel ed.Proc.13th international Modal Analysis conference.New York:Union college,1995:927-933.
[13] 艾贻学. 大型土木结构的阻尼特性研究[D].武汉:武汉理工大学,2011.
[14] 建筑结构抗震设计规范(GB 50011-2010(2016年版)).中国建筑上业出版社.
[15] 柯国军,郭长青,胡绍全,等. 混凝土阻尼比研究[J]. 建筑材料学报,2004, 7(1):35-40. (KE Guojun,GUO Changqing,HU Shaoquan,et al. Study on the Damping Ratio of Concrete[J]. Journal of Building Materials, 2004, 7(1):35-40. (in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}