柔性机械臂残余振动控制

杜严锋,王聪

振动与冲击 ›› 2019, Vol. 38 ›› Issue (7) : 165-171.

PDF(723 KB)
PDF(723 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (7) : 165-171.
论文

柔性机械臂残余振动控制

  • 杜严锋,王聪
作者信息 +

Residual vibration control for a flexible manipulator

  • DU Yanfeng, WANG Cong
Author information +
文章历史 +

摘要

为了对柔性机械臂运动后的残余振动进行控制,对柔性机械臂系统建立了一次近似刚柔耦合动力学模型,并得到了柔性机械臂在非惯性系下的刚柔耦合动力学模型,当柔性机械臂为三角形和梯形运动规律时,针对不同的运动参数对系统振动变形情况进行了仿真。仿真结果表明,当系统的减速时间相对系统一阶振动周期较小时,系统运动停止后残余振动的幅值较大,当系统的减速时间等于系统一阶振动周期时,系统的残余振动得到了很好地抑制。当减速时间不变,系统的残余振动随着匀速转动时间的变化而波动变化,系统的匀速转动时间为系统一阶振动周期的四分之一时,系统残余振动达到局部极小。

Abstract

In order to control residual vibration for a flexible manipulator after its motion stopping,the first-order approximation rigid-flexible coupled dynamic model was built for the flexible manipulator system and its rigid-flexible coupled dynamic model under a non-inertial coordinates was all derived. During the flexible manipulator having triangular and trapezoidal motion laws,the system vibration deformations were simulated under different motion parameters. The simulation results showed that the system’s residual vibration amplitude after its motion stopping is larger when its decelerating time is smaller than the system’s first order natural vibration period; the system’s residual vibration is well suppressed when its decelerating time is equal to the system’s first order natural vibration period; when its decelerating time is constant,the system’s residual vibration fluctuates with the variation of the time of its rotation with a constant speed; when the time of its rotation with a constant speed is a quarter of the system’s first order natural vibration period,the system’s residual vibration reaches a local minimum.

关键词

柔性机械臂 / 刚柔耦合 / 残余振动 / 振动控制

Key words

 flexible manipulator / rigid-flexible coupling / residual vibration / vibration control

引用本文

导出引用
杜严锋,王聪. 柔性机械臂残余振动控制[J]. 振动与冲击, 2019, 38(7): 165-171
DU Yanfeng, WANG Cong. Residual vibration control for a flexible manipulator[J]. Journal of Vibration and Shock, 2019, 38(7): 165-171

参考文献

[1] SHAN J, SUN D, LIU D. Design for robust component synthesis vibration suppression of flexible structures with on-off actuators [J]. IEEE Transactions on Robotics & Automation, 2004, 20(3): 512-525.
[2] ZHANG J, LIU T, ZHAO Z. Study on Component Synthesis Active Vibration Suppression Method Using Zero-placement Technique [J]. Chinese Journal of Aeronautics, 2008, 21(4): 304-312.
[3] SINGHOSE W E, SEERING W P, SINGER N C. Input shaping for vibration reduction with specified insensitivity to modeling errors [C] // Proceedings of the 1996 Japan-USA Symposium on Flexible Automation. Boston, MA, USA: 1996. 307-313.
[4] SINGHOSE W E, MILLS B W. Command generation using specified-negative-amplitude input shapers [C] // Proceedings of the 1999 American Control Conference (99ACC). San Diego, CA, USA: IEEE, 1999. 61-65.
[5] HUSSEIN J E, UCHIYAMA N, SANO S, et al. Residual vibration suppression of planar robotic manipulators using trapezoidal/S-curve based velocity profiles [C] // Proceedings of the 2015 IEEE Conference on Control and Applications, CCA 2015-Proceedings. 55 North Steyne, Sydney, NSW, Australia: Institute of Electrical and Electronics Engineers Inc. 2015. 1148-1153.
[6] HA C-W, REW K-H, KIM K-S, et al. Zero placement of the asymmetric S-curve profile to minimize the residual vibration [J]. Journal of Institute of Control, Robotics and Systems, 2012, 18(4): 308-313.
[7] MECKL P H, ARESTIDES P B, WOODS M C. Optimized S-curve motion profiles for minimum residual vibration [C] // Proceedings of the 1998 American Control Conference, ACC 1998. Philadelphia, PA, United States: Institute of Electrical and Electronics Engineers Inc. 1998. 2627-2631.
[8] 董兴建, 孟光. 压电悬臂梁的动力学建模与主动控制 [J]. 振动与冲击, 2005, 24(6): 54-64.
 DONG Xing-jian, MENG Guang. Dynamics modeling and active vibration control of cantilever beam with piezoelectrics [J]. Journal of Vibration and Shock, 2005, 24(6): 54-64.
[9] 曹青松, 周继惠, 黎林, 等. 基于模糊自整定PID算法的压电柔性机械臂振动控制研究[J]. 振动与冲击, 2010, 29(12): 181-186.
 CAO Qing-song, ZHOU Ji-hui, LI Lin, et al. Vibration control of piezoelectric flexible manipulator based on fuzzy self-tuning PID algorithm [J]. Journal of Vibration and Shock, 2010, 29(12): 181-186.
[10] 曹青松, 洪芸芸, 周继惠, 等. 基于PSO自整定PID控制器的柔性臂振动控制[J]. 振动、测试与诊断, 2014, 34(06): 1045-1049.
 CAO Qing-song, HONG Yun-yun, ZHOU Ji-hui, et al. Vibration Control of Flexible Manipulator Based on Self-Tuning PID Controller by PSO [J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(06): 1045-1049.
[11] 姜晶, 邓宗全, 岳洪浩, 等. 基于光控压电混合驱动悬臂梁独立模态控制[J]. 振动与冲击, 2015, 34(07): 64-70.
 JIANG Jing, DENG Zong-quan, YUE Hong-hao, et al. Independent modal control on cantilever beam based on hybrid photovoltaic / piezoelectric actuation mechanism [J]. Journal of Vibration and Shock, 2015, 34(07): 64-70.
[12] 陈希, 王海, 陶伟, 等. 基于压电陶瓷的柔性机械臂主动振动控制实验研究[J]. 传感技术学报, 2017, 30(05): 777-781.
 CHEN Xi, WANG Hai, TAO Wei, et al. Experimental Study of Active Vibration Control of Flexible Manipulator Based on Piezoelectric Ceramic Elements [J]. Chinese Journal of Sensors and Actuators, 2017, 30(05): 777-781.
[13] FANSON J L, CAUGHEY T K. Positive position feedback control for large space structures [J]. AIAA Journal, 1990, 28(4): 717-724.
[14] HU Q L, SHI P, GAO H J. Adaptive variable structure and commanding shaped vibration control of flexible spacecraft [J]. Journal of Guidance Control & Dynamics, 2007, 30(3): 804-815.
[15] DUBAY R, HASSAN M, LI C, et al. Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator [J]. Isa Transactions, 2014, 53(5): 1609-1619.
[16] 杨辉, 洪嘉振, 余征跃. 刚-柔耦合多体系统动力学建模与数值仿真[J]. 计算力学学报, 2003(04): 402-408.
 YANG Hui, HONG Jia-zhen, YU Zheng-yue. Dynamics modeling and numerical simulation for a rigid-flexible coupling multibody system [J]. Chinese Journal of Computational Mechanics, 2003(04): 402-408.

PDF(723 KB)

601

Accesses

0

Citation

Detail

段落导航
相关文章

/