基于Stewart平台的隔振与抑振协同控制研究

王嘉铭,孔永芳,黄海

振动与冲击 ›› 2019, Vol. 38 ›› Issue (7) : 186-194.

PDF(2002 KB)
PDF(2002 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (7) : 186-194.
论文

基于Stewart平台的隔振与抑振协同控制研究

  • 王嘉铭,孔永芳,黄海
作者信息 +

Cooperative control for vibration isolation and suppression based on Stewart platform

  • WANG Jiaming, KONG Yongfang, HUANG Hai
Author information +
文章历史 +

摘要

Stewart平台常被选作卫星本体和精密载荷之间的连接和隔抑振装置,但现有基于Stewart平台的控制方法无法实现宽带隔振与抑振协同控制,针对此问题,提出了一种自适应滤波与Skyhook相结合的控制方法,其中自适应滤波控制可实现隔抑振协同控制,但平台小阻尼比特性会对其稳定性产生不利影响,故引入Skyhook作为控制内环以增加主动阻尼。实验结果表明,当平台的上、下平板同时受到扰动时,上平板在6-50Hz频率范围内加速度响应的衰减可达12dB以上,验证了宽带隔振与抑振协同控制的有效性,且与单独的自适应滤波控制相比,所提出的方法具有更好的稳定性。

Abstract

Stewart platform is often taken as a connection device between a satellite and precise load and a device for vibration isolation and suppression. However,the existing control methods based on Stewart platform can’t realize cooperative control of broadband vibration isolation and suppression. Aiming at this problem,a control method combining adaptive filtering with Skyhook was proposed. The adaptive filtering method was used to realize cooperative control of vibration isolation and suppression,but the platform feature of small damping ratio had a negative effect on its stability. Skyhook was taken as the control inner loop to increase active damping. The test results showed that when the upper plate and lower one of the platform are both disturbed,the decay of the upper plate’s acceleration response can reach more than 12 dB within the frequency range of 6-50 Hz,the effectiveness of the cooperative control for broadband vibration isolation and suppression is verified; compared with the single adaptive filtering control method,the proposed method has a better stability.

关键词

微振动 / Stewart平台 / 自适应滤波 / 振动隔离 / 振动抑制

Key words

micro-vibration / Stewart platform / adaptive filtering / vibration isolation / vibration suppression

引用本文

导出引用
王嘉铭,孔永芳,黄海. 基于Stewart平台的隔振与抑振协同控制研究[J]. 振动与冲击, 2019, 38(7): 186-194
WANG Jiaming, KONG Yongfang, HUANG Hai. Cooperative control for vibration isolation and suppression based on Stewart platform[J]. Journal of Vibration and Shock, 2019, 38(7): 186-194

参考文献

[1] Zhou W Y, LI D X, LUO Q, et al. Analysis and testing of microvibrations produced by momentum wheel assemblies[J]. Chinese Journal of Aeronautics, 2012, 25(4): 640-649.
[2] 陈江攀, 程 伟, 李 雪. 太阳翼驱动机构扰振力矩的建模与仿真[J]. 振动与冲击, 2017, 36(20): 188-194.
CHEN Jiangpan, CHENG Wei, LI Xue. Modeling and simulation of the disturbance torque generated by solar array drive assembly. Journal of Vibration and Shock, 2017, 36(20): 188-194.
[3] 史韦意, 陈剑, 曾维俊, 等. 空间斯特林制冷机的振动控制研究[J]. 低温与超导, 2014 ,42(2): 10-15.
Shi Weiyi, Chen Jian, Zeng Weijun, et al. Research on vibration control of space Stirling cryocooler[J]. Cryogenics and Superconductivity, 2014, 42(2): 10-15.
[4] 张庆君, 王光远, 郑钢铁. 光学遥感卫星微振动抑制方法及关键技术[J]. 宇航学报, 2015, 36(2): 125-132.
Zhang Qingjun, Wang Guangyuan, Zheng Gangtie. Micro-Vibration Attenuation Methods and Key Techniques for Optical Remote Sensing Satellite[J]. Journal of Astronautics, 2015, 36(2): 125-132.
[5] Liu C C, Jing X J, Daley S, et al. Recent advances in micro-vibration isolation[J]. Mechanical Systems and Signal Processing, 2015, 56-57: 55-80.
[6] 谢溪凌, 王超新, 陈燕毫,等. 一种Stewart隔振平台的动力学建模及实验研究[J]. 振动与冲击, 2017, 36(12):201-207.
Xie Xiling, Wang Chaoxin, Chen Yanhao, et al .Dynamic modeling and experiment of a hybrid passive active Stewart vibration isolation platform[J]. Journal of Vibration and Shock, 2017, 36(12):201-207.
[7] Kong Y, Huang H. Vibration isolation and dual-stage actuation pointing system for space precision payloads[J]. Acta Astronautica, 2018, 143: 183-192.
[8] Chi W, Cao D, Wang D, et al. Design and experimental study of a VCM-based Stewart parallel mechanism used for active vibration isolation[J]. Energies, 2015, 8(8): 8001-8019.
[9] Lin H, McInroy J E. Disturbance attenuation in precise hexapod pointing using positive force feedback[J]. Control Engineering Practice, 2006, 14(11): 1377-1386.
[10] 李伟鹏, 黄海, 黄舟. 基于Stewart平台的星上微振动主动隔离/抑制[J]. 机械科学与技术, 2015, 34(4):629-635.
Li Weipeng, Huang Hai, Huang Zhou. Active Isolation/Suppression for Satellite Micro-vibration with Stewart Platform[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(4):629-635.
[11] Cobb R G,Sullivan J M, Das A, et al. Vibration isolation and suppression system for precision payloads in space[J]. Smart Materials and Structures, 1999, 8(6): 798-812.
[12] Chen Y, Mcinroy J E. Identification and decoupling control of flexure jointed hexapods[C]// IEEE International Conference on Robotics and Automation, 2000. Proceedings. ICRA. IEEE, 2000:1936-1941 vol.2.
[13] Wu L, Qiu X, Guo Y. A generalized leaky FxLMS algorithm for tuning the waterbed effect of feedback active noise control systems[J]. Mechanical Systems and Signal Processing, 2018, 106: 13-23.
[14] 郑洪波, 胡芳, 黄志伟,等. 基于自适应方法的轴系纵振主动控制研究[J]. 振动与冲击, 2018, 37(4): 203-207.
ZHENG Hongbo, Hu Fang, HUANG Zhiwei, et al. The research of shaft longitudinal vibration active control based on adaptive method. Journal of Vibration and Shock, 2018, 37(4): 203-207.
[15] Slotine J J E, Li W P. Applied nonlinear control[M]. Englewood Cliffs, NJ: Prentice Hall, 1991.
[16] 李嘉全, 王永. 一种新的滤波 X-LMS算法研究[J]. 振动与冲击, 2008, 27(3): 5-7.
Li Jiaquan, Wang Yong. Study on filtered X-LMS algorithm[J]. Journal of Vibration and Shock, 2008, 27(3): 5-7.
[17] Van De Ridder L, Beijen M A, Hakvoort W B J, et al. Active vibration isolation feedback control for coriolis mass-flow meters[J]. Control engineering practice, 2014, 33: 76-83.
[18] Kajikawa Y, Gan W S, Kuo S M. Recent advances on active noise control: open issues and innovative applications[J]. APSIPA Transactions on Signal and Information Processing, 2012, 1:1-21.
[19] Song Y, Gong Y, Kuo S M. A robust hybrid feedback active noise cancellation headset[J]. IEEE Transactions on Speech & Audio Processing, 2005, 13(4):607-617.
[20] Wang L V, Gan W S, Khong A W H, et al. Convergence analysis of narrowband feedback active noise control system with imperfect secondary path estimation[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(11): 2403-2411.

PDF(2002 KB)

621

Accesses

0

Citation

Detail

段落导航
相关文章

/