亲水与超疏水高温球体入水空泡实验研究

李佳川1,魏英杰1,孙钊2,3,王聪1

振动与冲击 ›› 2019, Vol. 38 ›› Issue (7) : 35-41.

PDF(1834 KB)
PDF(1834 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (7) : 35-41.
论文

亲水与超疏水高温球体入水空泡实验研究

  • 李佳川1,魏英杰1,孙钊2,3,王聪1
作者信息 +

Water-entry cavitation experiments of hydrophilic and super-hydrophobic hot spheres

  • LI Jiachuan1,WEI Yingjie1,SUN Zhao2,3,WANG Cong1
Author information +
文章历史 +

摘要

基于高速摄像方法,开展了28—350°C范围内不同温度的亲水性与超疏水性球体垂直入水实验研究,分析了表面润湿性、水温、球温和入水速度对入水空泡形态特性的影响。结果表明,在高温水中,核态沸腾阶段的汽泡扰动使亲水球体可以在较低入水速度下形成完整的粗糙空泡,超疏水球体受到核态沸腾和疏水性的耦合影响产生褶皱的光滑空泡,超疏水球体可以在较低温度下进入膜态沸腾阶段形成光滑的入水空泡,并且相比于亲水球体,随着入水速度的增加空泡壁面不易受到扰动;在低温水中,当球温较高时,稳定的蒸汽膜较难维持,超疏水球体可以产生比亲水球体更完整的空泡。

Abstract

The vertical water-entry experiments of hydrophilic and super-hydrophobic hot spheres within the temperature range of 28°C-350°C were conducted and recorded with a high-speed video camera. The effects of surface wettability,water temperature,sphere body temperature and water-entry velocity on characteristics of cavitation morphology in water were analyzed. The results showed that in high temperature water,bubble disturbance in nucleate boiling stage can cause a hydrophilic sphere to form a complete rough cavitation at a lower water-entry rate,and a super-hydrophobic sphere affected by coupling of nucleate boiling and hydrophobicity can produce a smooth cavitation with folds,a super-hydrophobic sphere can enter a film boiling stage under a lower sphere temperature to form a smooth cavitation in water,the cavitation wall surface is not easy to be disturbed with increase in water-entry velocity compared with a hydrophilic sphere; in low temperature water,stable vapor film is not easy to keep when sphere temperature is higher,a super-hydrophobic sphere can produce a more complete cavitation than a hydrophilic one can.

关键词

高温球体 / 入水空泡 / 超疏水 / 沸腾

Key words

hot sphere / water-entry cavity / superhydrophobicity / boiling

引用本文

导出引用
李佳川1,魏英杰1,孙钊2,3,王聪1. 亲水与超疏水高温球体入水空泡实验研究[J]. 振动与冲击, 2019, 38(7): 35-41
LI Jiachuan1,WEI Yingjie1,SUN Zhao2,3,WANG Cong1. Water-entry cavitation experiments of hydrophilic and super-hydrophobic hot spheres[J]. Journal of Vibration and Shock, 2019, 38(7): 35-41

参考文献

[1] SEDDON C M, MOATAMEDI M. Review of water entry with applications to aerospace structures[J]. Int J Impact Eng, 2006, 32: 1045-1067.
[2] VON KÁRMÁN T. The impact on seaplane floats during landing[R]. NACA TN, 1929, 321.
[3] MAY A. Vertical entry of missiles into water[J]. J Appl Phys, 1952, 23: 1362-1372.
[4] WORTHINGTON A M, COLE R S. Impact with a liquid surface, studied by the aid of instantaneous photography[J]. Phil Trans R Soc Lond, 1897, A 189: 137-148.
[5] MAY A. Effect of surface condition of a sphere on its water-entry cavity[J]. J Appl Phys, 1951, 22: 1219-1222.
[6] DUEZ C, YBERT C, CLANET C, et al. Making a splash with water repellency[J]. Nat Phys, 2007, 3: 180-183.
[7] DUCLAUX V, CAILLÉ F, DUEZ C, et al. Dynamics of transient cavities[J]. J Fluid Mech, 2007, 591: 1-19.
[8] 孙钊,曹伟,王聪.球体垂直入水过程流体动力数值研究[J].振动与冲击,2017,36(20),165-172.
 SUN Zhao, CAO Wei, WANG Cong. Numerical investigations of hydrodynamic force acting on sphere during water entry[J]. Journal of Vibration and Shock, 2017, 36(20): 165-172.
[9] MARSTON J O, VAKARELSKI I U, THORODDSEN S T. Cavity formation by the impact of Leidenfrost spheres[J]. J Fluid Mech, 2012, 699: 465-488.
[10] 李佳川,魏英杰,王聪等.加热球体入水空泡实验研究[J].物理学报,2016,65(20):204703.
 LI Jia-chuan, WEI Ying-jie, WANG Cong, et al. Water-entry cavity of heated spheres[J]. Acta Phys Sin, 2016, 65(20): 204703.
[11] BIANCE A L, CHEVY F, CLANET C, et al. On the elasticity of an inertial liquid shock[J]. J Fluid Mech, 2006, 554: 47-66.
[12] QUÉRÉ D. Leidenfrost Dynamics[J]. Annu Rev Fluid Mech, 2013, 45: 197-215.
[13] YAGOV V. V., LEXIN M A, ZABIROV A R, et al. Film boiling of subcooled liquids. Part I: Leidenfrost phenomenon and experimental results for subcooled water[J]. Int Heat Mass Transf, 2016, 100: 908-917.
[14] YAGOV V V, LEKSIN M A, ZABIROV A R et al. Film boiling of subcooled liquids. Part II: Steady regimes of subcooled liquids film boiling[J]. Int Heat Mass Transf, 2016, 100: 918-926.

PDF(1834 KB)

402

Accesses

0

Citation

Detail

段落导航
相关文章

/