微机械陀螺敏感结构加工误差的存在使得微机械陀螺的弹性主轴和驱动/敏感轴不能完全重合,将导致信号出现误差。本文针对加工误差引起的角度偏移,即弹性主轴和驱动/敏感轴的不重合对微陀螺系统响应特性的影响进行研究。同时考虑系统的刚度非线性,基于拉格朗日方程建立了系统的动力学方程,利用平均法进行求解,得到了关于定常解的代数方程。利用同伦延拓方法研究了角度偏差对系统零偏、机械灵敏度和非线性度的影响。结果表明只有一个角度偏移时,随着偏移角度绝对值的增大,零偏和非线性度增加,机械灵敏度降低。当驱动和敏感方向同时有角度偏移时,两方向偏移角度相反时,零偏、机械灵敏度和非线性度随偏移角度大小的变化非常剧烈,而偏移角度相近时,偏移角度大小的影响较为平缓。给出了系统零偏和非线性度取极小值,机械灵敏度取极大值时,两个方向偏移角度的关系曲线,为工程中微陀螺敏感结构的修型提供了一定的理论依据。
Abstract
The manufacturing error’s existence of a MEMS gyro sensitive structure makes that its elastic principal axis and its driving/sensitive axis can’t completely coincide to cause its signals with errors. Here,the effects of angular deviation caused by manufacturing error,i.e.,the inconsistency of the two axes mentioned above on response characteristics of the micro-gyro system were studied. Considering both stiffness nonlinearity of the system and angular deviation between the two axes,the system’s dynamic equations were established using Lagrange equation and solved with the averaging method to deduce the algebraic equation for the system’s steady solution. The homotopy continuation method was used to study effects of angular deviation on system zero bias,mechanical sensitivity and nonlinearity. It was shown that when there is only one angular deviation,with increase in absolute value of deviation angle,zero bias and nonlinearity increase,while mechanical sensitivity decreases; when there are two angular deviations in both driving direction and sensitive one,if both deviation angles are opposite,zero bias,mechanical sensitivity and nonlinearity change very acutely with variation of deviation angles’ magnitude,if both deviation angles are close to each other,the effect of deviation angles’ magnitude is more gentle; when zero bias and nonlinearity are the minimum and mechanical sensitivity are the maximum,the relation curve between two deviation angles is derived to provide a theoretical basis for modification of MEMS gyro sensitive structures in engineering.
关键词
微机械陀螺 /
角度偏移 /
零偏 /
机械灵敏度 /
非线性度
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李欣业,张利娟,张华彪.陀螺系统的受迫振动及其时滞反馈控制[J].振动与冲击,2012,31(09):63-68.
Li X Y, Zhang L J, Zhang H B. Forced vibration of a gyroscope system and its delayed feedback control [J]. Journal of Vibration and Shock, 2012, 31(09): 63-68.
[2] Li X Y, Zhang L J, Zhang H B. Delayed feedback control on a class of generalized gyroscope systems under parametric excitation [J]. Procedia Engineering, 2011, 15: 1120-1126.
[3] 尚慧琳, 张涛, 文永蓬.参数激励驱动微陀螺系统的非线性振动特性研究[J].振动与冲击,2017,36(01):102-107.
Shang H L, Zhang T, Wen Y P. Nonlinear vibration behaviors of a micro-gyroscope system actuated by a parametric excitation [J]. Journal of Vibration and Shock, 2017, 36(01): 102-107.
[4] 文永蓬, 尚慧琳. 微陀螺动力学建模与非线性分析[J].振动与冲击,2015,34(04):69-73.
Wen Y P, Shang H L. Dynamic modeling and nonlinear analysis for a microgyroscope [J]. Journal of Vibration and Shock, 2015, 34(04): 69-73.
[5] 张琪昌,任环,韩建鑫.时滞控制下的微梳状驱动器动力学研究[J].振动与冲击, 2016, 35(18): 40-45.
Zhang Q C, Ren H, Han J X. Nonlinear dynamics of folded-MEMS comb drive resonators with time-delayed control [J]. Journal of Vibration and Shock, 2016, 35(18): 40-45.
[6] 张琪昌,周凡森,王炜.压膜阻尼作用下微机械谐振器动力学分析[J].振动与冲击,2015,34(17):124-130.
Zhang Q C, Zhou F S, Wang W. Dynamic characteristics of a micro-mechanical-resonator with squeeze film damping [J]. Journal of Vibration and Shock, 2015, 34(17): 124-130.
[7] 罗兵, 张辉, 吴美平.硅微陀螺正交误差及其对信号检测的影响[J]. 中国惯性技术学报, 2009, 17(05): 604-607.
Luo B, Zhang H, Wu M P. Quadrature signal of microgyroscope and its effect on signal detection [J]. Journal of Chinese Inertial Technology, 2009, 17(05): 604-607.
[8] Mohammadi Z, Salarieh H. Investigating the effects of quadrature error in parametrically and harmonically excited MEMS rate gyroscopes [J]. Measurement, 2016, (87): 152-175.
[9] 吝海锋, 王宁, 杨拥军, 等. 全解耦硅MEMS陀螺仪正交耦合分析[J]. 微纳电子技术, 2018, 55(01): 38-44.
Lin H F, Wang N, Yang Y J, et al. Orthogonal coupling analysis of a fully decoupled silicon MEMS gyroscope [J]. Micronanoelectronic Technology, 2018, 55(01): 38-44.
[10] 姜劭栋, 裘安萍, 施芹, 等. 硅微陀螺仪正交耦合系数的计算及验证[J]. 光学精密工程, 2013, 21(01): 87-93.
Jiang S D, Qiu A P, Shi Q, et al. Calculation and verification of quadrature coupling coefficients of silicon microgyroscope [J]. Optics and Precision Engineering, 2013, 21(01): 87-93.
[11] Erdinc T, Said E A. Quadrature-error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes [J]. Journal of Microelectro-mechanical Systems, 2012, 21(3): 656-667.
[12] 贺琨, 崔红娟, 侯占强, 等.微机械振动陀螺模态耦合误差分析与激光修形方法研究[J].传感器与微系统, 2013, 32(03): 21-24.
He K, Cui H J, Hou Z Q, et al. Study on modal coupling error analysis and laser trimming method for micromachining vibration gyroscope [J]. Transducer and Microsystem Technologies, 2013, 32(03): 21-24 .
[13] 郝淑英, 张辰卿, 齐成坤,等. 驱动微梁形状对微陀螺仪耦合误差的影响分析[J].传感技术学报, 2018, 31(01): 48-53.
Hao S Y, Zhang C Q, Qi C K, et al. Analysis of the influence of driving micro beam shape on MEMS Gyroscope coupling error [J]. Chinese Journal of Sensors and Actuators, 2018, 31(01): 48-53.
[14] Gao H T, Li H S. Optimization and experimentation of dual-mass MEMS gyroscope quadrature error correction methods [J]. Sensors. 2016, (16): 71-77.
[15] Phani A S, Seshia A A, Palaniapan M, et al. Modal coupling in micromechanical vibratory rate gyroscopes [J]. IEEE Sensors Journal, 2006, 6(5): 1144-1152.
[16] 李庆扬,莫孜中,祁力群. 非线性方程组的数值解法[M]. 北京:科学出版社,2015.
Li Q Y, Mo Z Z, Qi L Q. Numerical methods for nonlinear systems of equations [M]. Beijing: Science Press, 2015
[17] 余磊. 轮式硅微角振动陀螺温度特性及非线性补偿方法研究[D]. 苏州大学硕士论文, 2015.
Yu L. Research on compensation method of temperature characteristics and nonlinear for wheel silicon micro angular vibratory gyroscope [D]. Master thesis of Suzhou University, 2015.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}