各有一个线性项的两个新的混沌系统及其异结构同步

鲜永菊1,夏诚1,钟德1,徐昌彪2

振动与冲击 ›› 2019, Vol. 38 ›› Issue (7) : 71-76.

PDF(1338 KB)
PDF(1338 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (7) : 71-76.
论文

各有一个线性项的两个新的混沌系统及其异结构同步

  • 鲜永菊1,夏诚1,钟德1,徐昌彪2
作者信息 +

Two new chaotic systems with only one linear term and their different structure synchronization

  • XIAN Yongju 1, XIA Cheng 1, ZHONG De 1, XU Changbiao 2
Author information +
文章历史 +

摘要

本文构建了两个新的三维自治连续混沌系统,其重要特点是它们均有线平衡以及一个线性项。分析了两个系统的平衡点、Lyapunov指数谱和分岔图等。借助于拓扑马蹄理论和数值计算,找到了两个系统的拓扑马蹄,并获得了拓扑熵。基于条件Lyapunov稳定性理论,采用主动控制同步法实现了两个系统的异结构同步。数值模拟和理论分析验证了所设计控制器的有效性。

Abstract

Here,two new 3-D autonomous continuous chaotic systems were constructed. Their important characteristics were that each of them has line equilibrium and only one linear term. The two systems’ equilibrium point,Lyapunov exponent spectrum and bifurcation diagram were investigated,respectively. By means of the topological horseshoe theory and numerical computation,their topological horseshoes and topological entropies were obtained. Based on the conditional Lyapunov stability theory,the different structure synchronization between the two chaotic systems was realized using the active control synchronization method. Numerical simulation and theoretical analysis verified the effectiveness of the designed controller.

关键词

混沌系统 / 线平衡 / 拓扑马蹄 / 异结构同步

Key words

chaotic system / line equilibrium / topological horseshoe / different structure synchronization

引用本文

导出引用
鲜永菊1,夏诚1,钟德1,徐昌彪2. 各有一个线性项的两个新的混沌系统及其异结构同步[J]. 振动与冲击, 2019, 38(7): 71-76
XIAN Yongju 1, XIA Cheng 1, ZHONG De 1, XU Changbiao 2. Two new chaotic systems with only one linear term and their different structure synchronization[J]. Journal of Vibration and Shock, 2019, 38(7): 71-76

参考文献

[1] Zhou P, Bai R J, Zheng J M. Stabilization of a fractional-order chaotic brushless DC motor via a single input[J]. Nonlinear Dynamics, 2015, 82(1-2): 1-7.
[2] 曾强洪, 朱石坚, 楼京俊, 等. 基于滑模控制投影混沌同步在隔振系统中的应用研究[J]. 振动与冲击, 2010, 29(12): 114-117.
Zeng Qiang-hong, Zhu Shi-jian, Lou Jin-jun, et al. The application of projective synchronization to vibration isolation system based on sliding mode control[J]. Journal of Vibration and Shock, 2010, 29(12): 114-117.
[3] 许  伟, 程  刚, 黄  林, 等. 基于混沌模拟退火PSO算法的威布尔分布参数估计应用研究[J]. 振动与冲击, 2017, 36(12): 134-139. 
XU Wei, CHENG Gang, HUANG Lin, et al. Chaotic simulated PSO algorithm application research for Weibull distribution parameter estimation[J]. Journal of vibration and shock, 2017, 36(12): 134-139.
[4] 卢少波,靳宗向,康学忠. 计及空间温度效应的齿轮系统动力学行为研究[J]. 振动与冲击, 2017, 36(12): 163-168.
LU Shao-bo, JIN Zong-xiang, KANG Xue-zhong. Study of dynamic behavior for gear system considering the temperature effect of space[J]. Journal of vibration and shock, 2017, 36(12): 163-168.
[5] 吕一品, 熊天红, 易文俊, 等. 系统参数对超空泡航行体非线性动力学特性的影响[J]. 振动与冲击, 2017, 36(24): 156-165.
LV Yi-pin, XIONG Tian-hong, Yi Wen-jun, et al. The Influence of System Parameters on Nonlinear Dynamic Characteristics of Supercavitating Vehicles[J]. Journal of vibration and shock, 2017, 36(24): 156-165.
[6] Lorenz N. Deterministic Nonperiodic Flow [J]. Journal of the Atmospheric Sciences, 1963, 20: 130-141.
[7] Chen G R, Ueta T. Yet another chaotic attractor[J]. International Journal of Bifurcation & Chaos, 1999, 9(7): 1465-1466.
[8] Lü J H, Chen G R. A new chaotic attractor coined[J]. International Journal of Bifurcation & Chaos, 2002, 12(3): 659-661.
[9] Lui C X, Liu T, Liu L, et al. A new chaotic attractor[J]. Chaos, Solitons and Fractals, 2004, 22, 1031–1038.
[10] Viet-Thanh Pham, Christos Volos, Sajad Jafari, et al. Constructing a Novel No-Equilibrium Chaotic System[J]. International Journal of Bifurcation & Chaos, 2014, 24(05):1465.
[11] Yang Q G, Wei Z C, Chen G R. An unusual 3D autonomous qwqdratic chaotic system with two stable node-foci[J]. International Journal of Bifurcation & Chaos, 2010, 20(04): 1002632.
[12] Yang Q G, Chen G R. A chaotic system with one saddle and two stable node-foci[J]. International Journal of Bifurcation & Chaos, 2008, 18(05): 1393-1414.
[13] 孙常春, 陈仲堂, 侯祥林. 具有无穷平衡点的新混沌系统动力学分析与振动控制[J]. 振动与冲击, 2017, 36(21).
SUN Chang-chun, CHEN Zhong-tang, HOU Xiang-lin. Dynamic analysis and vibration control of a new chaotic system with infinite equilibrium point[J]. Journal of Vibration and Shock, 2017, 36(21).
[14] 罗小华, 李华青, 吴昊, 等. 异结构混沌系统的自适应同步控制[J]. 重庆邮电大学学报(自然科学版), 2009, 21(3): 376-378.
LUO Xiao-hua, LI Hua-qing, WU Hao, et al. Adaptive synchronization control between different structures chaotic systems[J]. Journal of Chongqing University of Posts & Telecommunications, 2009, 21(3): 376-378.
[15] 李建平, 刘斌, 刘东南. 异结构混沌系统同步及其在保密通信中的应用[J]. 动力学与控制学报, 2010, 08(4): 334-337.
Li Jian-ping, LIU Bin, Liu Dong-nan. Synchronization of different structure chaotic systems and its application to secure communication[J]. Journal of Dynamics & Control, 2010, 08(4): 334-337.
[16] 于娜, 丁群, 陈红. 异结构系统混沌同步及其在保密通信中的应用[J]. 通信学报, 2007, 28(10): 73-78.
YU Na, Ding Qun, Chen Hong. Synchronization of different structure chaotic systems and the application in secure communication[J]. Journal on Communications, 2007, 28(10): 73-78.
[17] Quan Y, Yang X S. Review of dynamical complexity research based on topological horseshoe theory[C]//Control Conference, 2008. CCC. IEEE, 2008: 544 – 547.
[18] 李清都, 杨晓松. 基于拓扑马蹄的混沌动力学研究进展[J]. 动力学与控制学报, 2012, 10(4): 293-298.
LI Qing-du, YANG Xiao-song. Progresses on Chaotic Dynamics study with Topological Horseshoes[J]. Journal of Dynamics and Control, 2012, 10(4):293-298.
[19] 李清都, 赵武斌, 杨芳艳. 三维单向拉伸马蹄的寻找及其在Compass行走模型中的应用[J]. 计算物理, 2016, 33(1): 108-116.
LI Qing-du, ZHAO Wu-bin, YANG Fang-yan. 3D Topological Horseshoes with 1-Directional Expansion and Application in Compass Walking Model[J]. Computational physics, 2016, 33(1): 108 – 116.
[20] 曾洪正, 杨芳艳. 一个没有平衡点的混沌系统的拓扑马蹄[J]. 数学计算:中英文版, 2014, 2: 63-67.
ZENG Hong-zheng, YANG Fang-yan. Topological Horseshoe in a chaotic system with no equilibria[J]. Mathematical calculation, 2014(2):63-67.

PDF(1338 KB)

289

Accesses

0

Citation

Detail

段落导航
相关文章

/