基于BP神经网络的FTS输出控制

吕雪军,李国平,胡力,娄军强,吕俊智

振动与冲击 ›› 2019, Vol. 38 ›› Issue (7) : 77-85.

PDF(1330 KB)
PDF(1330 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (7) : 77-85.
论文

基于BP神经网络的FTS输出控制

  • 吕雪军,李国平,胡力,娄军强,吕俊智
作者信息 +

FTS output control based on BP neural network

  • L Xuejun, LI Guoping, HU Li, LOU Junqiang, L Junzhi
Author information +
文章历史 +

摘要

针对压电伺服刀架系统存在着固有的灵敏度低和加工过程中的一系列振动等问题,采用神经网络优化算法,提出了一种新型压电伺服刀架位移输出控制技术。本文首先获得系统传递函数,继而探究其内部联系,最终输出PID闭环阶跃响应曲线。借助于PID控制器,采用BP神经网络算法实现对于该系统的闭环控制。实验结果表明:传统PID控制系统对刀架平台进行控制后,刀架平台输出位移误差降低,平均误差为0.1743 μm,达到稳态值时的响应时间为0.36s。而BP神经网络PID控制技术可以将平均误差缩小至0.1126 μm,响应时间大幅度减少为0.15s,相对于传统控制技术的响应速度、超调量等性能进行了显著改善,同时,综合考虑了具体控制过程中的可靠性。

Abstract

Aiming at a piezoelectric servo tool holder system’s inherent low sensitivity and a series of vibration problems in process,a new piezoelectric servo tool holder displacement output control technique was proposed by using the neural network optimization algorithm. Here,the system transfer function was firstly obtained,then internal relations were explored,and finally the PID closed loop step response curve was outputted. By means of a PID controller,the closed-loop control of the system was realized using the BP neural network algorithm. Test results showed that after the tool holder platform is controlled with a traditional PID controller,its output displacement error is reduced,the average error is 0.174 3 μm,and the response time to reach the steady state value is 0.36 s; using the BP neural network combined with PID control technique,the average error can be reduced to 0.112 6 μm,the response time decreases greatly to reach 0.15 s, compared with the traditional control technique,the control performances,such as,response speed and overshoot are significantly improved,at the same time,the reliability of this control process is comprehensively considered.

关键词

快速伺服刀架系统 / BP神经网络 / PID控制器 / 精密定位 / 振动控制

Key words

Piezoelectric servo turret system / BP neural network / PID controller / precision positioning / vibration control

引用本文

导出引用
吕雪军,李国平,胡力,娄军强,吕俊智. 基于BP神经网络的FTS输出控制[J]. 振动与冲击, 2019, 38(7): 77-85
L Xuejun, LI Guoping, HU Li, LOU Junqiang, L Junzhi. FTS output control based on BP neural network[J]. Journal of Vibration and Shock, 2019, 38(7): 77-85

参考文献

[1] 李国平,孙涛,邱辉,等.高频响伺服刀架的建模与控制[J].光学精密工程,2016,24(08):1991-1999.
      LI  Guo-ping, SUN  Tao, QIU  Hui,  et al.  Modeling and control of high frequency sound  Servo  tool  rack  and control [J].  optical  precision  engineering,  2016,  24  (08):
      1991-1999.
[2] 孙涛,李国平,娄军强,等. 基于柔性铰链的新型快速伺服刀架设计[J]. 振动与冲击,2016,35(13):160-166.
      SUN Tao, LI Guo-ping, LOU Jun-Qiang, et al.  Based on flexible hinges, a new fast servo tool frame is designed for [J]. vibration and shock, 2016,35 (13): 160-166.
[3] 白亮,冯蕴雯,薛小锋. 压电智能结构振动的一致性PID(CPID)控制[J]. 振动与冲击,2017,(22):192-198.
      BAI Liang, FENG Yun-wen, XUE Xiao-feng.  Piezoelectric intelligent  structure vibration consistency PID (CPID) control [J]. Vibration and shock, 2017, (22): 192-198.
[4] 刘智,黄江涛,冯欣. 构建多尺度深度卷积神经网络行为识别模型[J]. 光学精密工程,2017,25(03):799-805.
      LIU Zhi,  HUANG Jiangtao,  FENG  Xin.. Construction of multi-scale depth convolution neural behavior ecognition  model [J]. optics and precision engineering, 2017,25 (03):
      799-805.
[5] ANDREAS M, STEFFEN B, ARVID A.State machine based nonlinear hysteresis model[J].Mechatronics, Volume 31, October 2015, Pages 215-221
[6] 李映君,韩彬彬,王桂从,等. 基于径向基函数神经网络的压电式六维力传感器解耦算法[J]. 光学精密工程,2017,25(05):1266-1271.
      LI Ying-jun, HAN Bin-bin, WANG Gui-cong , et al.. The radial basis function neural network piezoelectric dimensional force sensor based on the decoupling algorithm of [J]. optics and Precision    engineering,   2017,25 (05): 1266-1271.
[7] 熊蕊,刘向东. 含PID控制器的迟滞非线性控制系统的主共振及奇异性[J]. 振动与冲击,2014,33(08):72-77..
      XIONG Rui, LIU  Xiang-dong.  The main resonance of  hysteresis nonlinear  control system with PID controller and singularity [J]. vibration and shock, 2014,33 (08): 72-77..
[8] 王威,薛彦冰,宋玉玲,等. 基于GA优化控制规则的汽车主动悬架模糊PID控制[J]. 振动与冲击,2012,31(22):157-162.
      WANG Wei, XUR Yanbing, SONG Yuling, et al.Fuzzy PID control of  Automobile Active Suspension  Based on  GA optimal control rules, [J]. vibration and shock, 2012,31 (22):
      157-162.
[9] ANDREW W,JIN H,YUSUF A.Piezoelectric tool actuator for precision machining on conventional CNCturning centers[J].Precision Engineering, 2003,27:335-345
[10] Dan W,Ken C,Xian W. Tracking control and active disturbance rejection with application to noncircular machining[J]. International Journal of Machine Tools and Manufacture . 2007 (15)
[11] WANG H F,YANG S Y.Design and control of a fast tool servo used in noncircular piston turning process[J] .Mechanical Systems and Signal Processing.2013,36:87-94.
[12] 于志亮,王岩,曹开锐,等.压电陶瓷执行器迟滞补偿及复合控制[J]. 光学精密工程,2017,25(08):2113-2120.
     YU Zhi-liang, WANG Yan, CAO Kairui, et al... Piezoceramic actuator hysteresis compensation Compound  control [J].  optical  precision engineering, 2017,25 (08): 2113-2120.
[13] 彭利荣,马占龙,王高文,等. 超薄光学元件精密加工关键技术[J]. 中国光学,2015,8(06):964-970.
      PENG  Li-rong, MA  Zhan-long,  WANG Gao-wen, WANG G W,et al..  Ultra precision optical processing  key  technology  of [J]. China optics, 2015,8 (06): 964-970.
[14] 侯学元,韩淑华,张明利,等.基于Ziegler-Nichols整定的PQF三辊连轧液压压下控制系统频域分析[J]. 机床与液压,2016,44(22):101-104.
      HOU Xue-yuan,  HAN  Shu-hua,  ZHANG Ming-li, et al..  Frequency domain analysis of

PDF(1330 KB)

Accesses

Citation

Detail

段落导航
相关文章

/