在介绍多变量信号调制模型的基础上,提出了一种基于双变量同步挤压小波变换的旋转机械故障诊断新方法。该方法首先通过正交采样技术获取互相垂直通道的振动信号并将其组成一个双变量信号;然后用同步压缩小波变换分别获取每个变量的同步压缩值,并运用自适应频率拼接技术划分双变量带宽的时频域,以识别双变量中的单分量信号,确定在这些频带内存在的瞬时振幅和频率;最后,根据多通道联合瞬时频率概念融合双变量信号中每个通道的瞬时频率和瞬时幅值,得到双变量信号的时频表征。转子双稳态信号、转子松动不对中碰摩复合故障和齿轮减速箱振动信号分析结果证明了所提方法的可行性和有效性。
Abstract
A new time-frequency analysis method for fault diagnosis of rotating machinery was proposed based on multivariable synchrosqueezing.Firstly, the method uses the vibration signals of vertical channels through a quadrature sampling and forms a bivariate signal.Then the simultaneous squeezed wavelet transform is used to obtain the synchronous extrusion value of each variable, and the adaptive frequency splicing technique is used to divide the time-frequency domain of the bivariate bandwidth to identify the single-component signal and determine the instantaneous amplitude and frequency presenting in these frequency bandwidth.Finally, according to the multi-channel joint instantaneous frequency concept, the instantaneous frequency and instantaneous amplitude of each channel in the bivariate signal are combined to obtain the time-frequency representation of the bivariate signal.The analysis results of rotor bistable signals, rotor misalignment composite faults and gearbox vibration signals demonstrate the feasibility and effectiveness of the proposed method.
关键词
多变量信号调制 /
同步压缩小波变换 /
时频分析 /
故障诊断
{{custom_keyword}} /
Key words
Multivariate signal modulation model /
Squeezed wavelet transform /
Time-frequency analysis /
Rotary machinery fault diagnosis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]王国彪,何正嘉,陈雪峰,等.机械故障诊断基础研究“何去何从”[J].机械工程学报,2013,49(1):63-72.
WANG Guobiao,HE Zhengjia,CHEN Xuefeng,et al.Basic Research on Machinery Fault Diagnosis-What is the Prescription[J].Journal of Mechanical Engineering,2013,49(1):63-72.
[2]屈梁生.机械故障的全息诊断原理[M].北京:科学出版社,2007
Qu Liangsheng. Holographic diagnosis principle of mechanical failure [M]. Beijing: Science Press, 2007
[3]韩捷,石来德. 全矢谱技术及工程应用[M]. 北京:机械工业出版社,2008.
HAN Jie,SHI Lai de.Full vector spectrum technology and its engineering application[M].Beijing:China Machine Press,2008.
[4]巩晓赟. 基于全矢谱的非平稳故障诊断关键技术研究[D]. 郑州:郑州大学博士学位论文,2013.
Xiaoyun Gong. Research on key technology of nonstationary fault diagnosis based on full vector spectrum[D]. ZhengZhou:Doctoral Dissertation of Zhengzhou University,2013.
[5]黄传金,邬向伟,曹文思,等.基于 LMD 的全矢包络技术及其在 TRT 振动故障诊断中的应用[J].电力自动化设备,2015,35(2):168-174.
HUANG Chuanjin,WU Xiangwei,CAO Wensi,et al.LMD-based full vector envelope technique and its application in TRT vibration fault diagnosis[J].Electric Power Automation Equipment,2015,35(2):168-174.
[6]Xiaomin Zhao, Tejas H. Patel, Ming J. Zuo.Multivariate EMD and full spectrum based condition monitoring for rotating machinery[J].Mechanical Systems and Signal Processing 27 (2012) 712–728
[7]Rilling,G.Flandrin,P.Goncalves,P.et al.Bivariate empirical
mode decomposition[J].IEEE Signal Process,2007,14(12):
936-939.
[8] Cheolsoo Park,David Looney,Danilo P. Mandic,et al. The complex local mean decomposition[J]. Neurocomputing ,74 (2011):867-875.
[9]黄传金,宋海军,秦娜.BEMD全矢包络谱及其在TRT故障诊断中的应用[J].电力自动化设备,2018,38(1):184-192
HUANG Chuanjin,SONG Haijun,QIN Na.Full envelope spectrum based on BEMD and its applications in TRT fault diagnosis[J]. Electric Power Automation Equipment2018,38(1):184-192
[10]黄传金,孟雅俊,雷文平,等.复局部均值分解全矢包络技术及其在转子故障特征提取中的应用[J].机械工程 学报,2016,52(7):69-78.
HUANG Chuanjin,MENG Yajun,LEI Wenping,et al.Full Vector Envelope Technique Based on Complex Local Mean Decomposition and Its Application in Fault Feature Extraction for Rotor System[J]. Journal of mechanical of engineering,2016,52(7):69-78
[11] I. Daubechies, J. Lu, and H.-T. Wu, “Synchrosqueezed wavelet trans-forms: An empirical mode decomposition-like tool,” Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 243–261, 2011.
[12]刘景良,任伟新,王佐才,等.基于同步挤压小波变换的结构瞬时频率识别[J].振动与冲击,2013,32(18):37-42,48
LIU Jing-liang,REN Wei-xin,WANG Zuo-cai,et al. Instantaneous frequency identification based on synchrosqueezing wavelet transformation[J].JOURNAL OF VIBRATION AND SHOCK,2013,32(18):37-42,48
[13] Zhipeng Feng, Xiaowang Chen, Ming Liang.Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions[J].Mechanical Systems and Signal Processing 52-53 (2015) 360-375
[14]陈小旺,冯志鹏,LIANG Ming.基于迭代广义同步压缩变换的时变工况行星齿轮箱故障诊断[J].机械工程学报,2015,51(1):131-137
CHEN Xiaowang FENG Zhipeng LIANG Ming.Planetary Gearbox Fault Diagnosis under Time-variant Conditions Based on Iterative Generalized Synchrosqueezing Transform[J].JOURNAL OF MECHANICAL ENGINEERING,2015,51(1): 131-137
[15]熊炘,占锐,王小静。同步压缩小波与希尔伯特-黄变换性能对比[J]。振动、测试与诊断,2015,35(6):1103-1202
Xiong Xin,Zhan Rui,Wang Xiaojing.Comparison study on sysnchrosqueezed wavelet transform and Hilbert-Huang Transform.Journal of Vibratin,Measurement&Diagnosis,2015,35(6):1103-1202
[16]熊 伟,张海滨,何清波,等.基于 ROSST 的列车轴承轨边声学信号校正与诊断研究[J].振动与冲击,2017,36(6):11-17
XIONG Wei,ZHANG Haibin,HE Qingbo,et al.Doppler distortion removal based on reassignment operator and SST for the wayside acoustic signal recovery and fault diagnosis of train bearings[J]. JOURNAL OF VIBRATION AND SHOCK,2017,36(6):11-17
[17]胡异丁,任伟新,杨栋.基于同步压缩变换和局部替代数据的非平稳振动信号分解方法[J].振动与冲击,2013,32(23):43-47
HU Yi- ding ,REN Wei- xin ,YANG Dong.Nonstationary vibration signal decomposition based on synchrosqueezing transformation and local surrogate data[J].JOURNAL OF VIBRATION AND SHOCK,2013,32(23):43-47
[18] Zhipeng Feng, Xiaowang Chen, Ming Liang.Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions[J].Mechanical Systems and Signal Processing 52-53 (2015) 360–375.
[19] Alireza Ahrabian , David Looney , Ljubiša Stanković,et al.Synchrosqueezing-based time-frequency analysis of multivariate data[J].Signal Processing 106 (2015) 331–341.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}