反向转动双机驱动振动筛同步控制

姜娇1,2,陈长征1,薄磊3,舒鑫3,王仲4,王远涛5

振动与冲击 ›› 2019, Vol. 38 ›› Issue (8) : 126-132.

PDF(1539 KB)
PDF(1539 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (8) : 126-132.
论文

反向转动双机驱动振动筛同步控制

  • 姜娇1,2,陈长征1,薄磊3,舒鑫3,王仲4,王远涛5
作者信息 +

Controlled synchronization of vibrating screen driven by two exciters rotating in the opposite direction

  • JIANG Jiao1,2, CHEN Changzheng1, BO Lei3, SHU Xin3, WANG Zhong4, Wang Yuantao5
Author information +
文章历史 +

摘要

在充分考虑电机与筛箱相互作用的基础上,研究了反向转动双机驱动振动筛控制同步的问题。在考虑感应电动机数学模型的基础上,建立了双机驱动振动筛的机电耦合模型。采用主从控制结构和滑模控制算法,设计了主电机的速度控制器和从电机的相位差控制器。基于Lyapunov稳定性理论及Barbalat引理,证明了所设计控制系统的稳定性。对于每台电机,采用矢量控制实现电机的快速反应。最后,应用Matlab/Simulink仿真分析验证所设计控制系统的有效性,并讨论了转速、相位差、激振质量等参数的影响,说明了控制系统的鲁棒性。通过研究发现,反向转动双机驱动控制同步振动筛不仅可以实现直线振动形式,而且可以灵活的调节振动方向角,还可以获得椭圆等其他振动形式。所研究内容可为振动筛的设计、控制与实际应用提供借鉴。

Abstract

The controlled synchronization of two exciters rotating in the opposite direction of a vibrating screen considering the interactions between motors and a screen box was investigated.The model of an induction motor was introduced and a typical mechanical-electromagnetic coupling model was developed.By applying master-slave control structure and sliding mode control algorithm, speed and phase difference controllers were designed.Based on the Lyapunov stability theory and the Barbalat lemma, the stability of the control system was proved.For each exciter, the vector control method and PI control algorithm were employed.The effectiveness of the control system was verified via Matlab/Simulink.Additionally, the effects of the parameters such as speed, phase difference, seismic mass were discussed.By using the proposed method, the vibrating screen could vibrate in the line mode and the vibrating direction angle was adjustable.The ellipse mode could be also implemented.The research provides some references for the design, control, and utilization of vibrating screen.

关键词

振动筛 / 控制同步 / 滑模控制 / 稳定性

Key words

Vibrating screen / controlled synchronization / sliding mode control / stability.

引用本文

导出引用
姜娇1,2,陈长征1,薄磊3,舒鑫3,王仲4,王远涛5. 反向转动双机驱动振动筛同步控制[J]. 振动与冲击, 2019, 38(8): 126-132
JIANG Jiao1,2, CHEN Changzheng1, BO Lei3, SHU Xin3, WANG Zhong4, Wang Yuantao5. Controlled synchronization of vibrating screen driven by two exciters rotating in the opposite direction[J]. Journal of Vibration and Shock, 2019, 38(8): 126-132

参考文献

[1] 闻邦椿, 李以农, 张义民, 等. 振动利用工程[M]. 北京: 科学出版社, 2005.
Wen Bangchun, Li Yinong, Zhang Yimin, et al. Vibration utilization engineering [M]. Beijing: Science Press, 2005.
[2] Wen B C, Zhang H, Liu S Y, et al. Theory and techniques of vibrating machinery and their applications[M]. Beijing: Science Press, 2010.
[3] 李菊, 曾氢菲, 邓嘉鸣,等. 多维并联振动筛筛分过程解析与筛面运动形式优选[J]. 农业机械学报, 2016,47(11): 399-407.
Li Ju, Zeng Qingfei, Deng Jiaming, et al.Screening Process analysis for multi-dimensional parallel vibrating screen and optimization of screen surface movement[J].Transactions of the Chinese Society for Agricultural Machinery, 2016, 47 (11): 399 - 407.
[4] 邓嘉鸣,沈惠平,李菊,等.三维并联振动筛设计与实验[J].农业机械学报,2013,44(11):342-346,328.
Deng Jiaming, Shen Huiping ,Li Ju, et al.Design and experiment for three-dimensional parallel kinematics vibration sieve[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(11):342-346,328.
[5] Wen B C, Fan J, Zhao C Y, et al. Vibratory synchronization and controlled synchronization in engineering [M]. Beijing: Science Press, 2009.
[6] Tomizuka M, Hu J S, Chiu T C, et al. Synchronization of two motion control axes under adaptive feedforward control[J].Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME.1992,114(2): 196-203.
[7] Deng Z, Shang J, Nian X. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints[J]. ISA Transactions. 2015, 59: 243-255.
[8] Xiao Y, Zhu K Y, Choo Liaw H. Generalized synchronization control of multi-axis motion systems[J]. Control Engineering Practice, 2005,13(7): 809-819.
[9] Xiao Y, Zhu K Y. Optimal synchronization control of high-precision motion systems[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1160-1169.
[10] Zhao D Z, Li C W, Ren J. Speed synchronization of multiple induction motors with total sliding mode control[J]. Systems Engineering - Theory & Practice, 2009, 29(10): 110-117.
[11] Zhang Z, Chau K, Wang Z. Chaotic speed synchronization control of multiple induction motors using stator flux regulation[J]. IEEE Transactions on Magnetics, 2012, 48(11): 4487-4490.
[12] Li L B, Sun L L, Zhang S Z, et al. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control[J]. ISA Transactions, 2015,58: 635-649.
[13] 张承慧, 石庆升, 程金. 一种多电机同步传动模糊神经网络控制器的设计[J]. 控制与决策. 2007, 22(1): 30-34.
Zhang Chenghui, Shi Qingsheng, Cheng Jin. Design of fuzzy neural network controller for synchronization drive in multi-motor systems[J]. Control and Decision. 2007, 22(1): 30-34.
[14] Zhao C Y, Zhao Q H, Zhang Y M, et al. Synchronization of two non-identical coupled exciters in a non-resonant vibrating system of plane motion [J]. Journal of Mechanical Science and Technology. 2011, 25(1):49-60.
[15] 丁学文. 电力拖动运动控制系统[M]. 北京:机械工业出版社, 2007.
[16] Kong X X, Chen X Z, Dou J X, et al. Controlled synchronization of two nonidentical homodromy coupling exciters driven by inductor motors in a vibratory system[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2016, 230(17): 3040-3054.

PDF(1539 KB)

Accesses

Citation

Detail

段落导航
相关文章

/