稳定器作用下坦克行进间炮口振动特性研究

陈宇,杨国来

振动与冲击 ›› 2019, Vol. 38 ›› Issue (8) : 21-27.

PDF(2023 KB)
PDF(2023 KB)
振动与冲击 ›› 2019, Vol. 38 ›› Issue (8) : 21-27.
论文

稳定器作用下坦克行进间炮口振动特性研究

  • 陈宇,杨国来
作者信息 +

A study on muzzle vibration characteristics of moving tanks under the influence of a stabilizer

  • CHEN Yu,YANG Guolai
Author information +
文章历史 +

摘要

为了研究减小坦克在稳定器作用下行进间炮口振动,提高射击精度的方法和途径。本文基于PID控制,在MATLAB/Simulink环境下对坦克垂向稳定器进行模拟。基于多体系统动力学、车辆地面力学及火炮发射动力学建立了某坦克行进间多体系统动力学模型,并基于RecurDyn/Control建立坦克行进间机电耦合动力学模型,通过数值计算对坦克在稳定器作用下的行进间炮口振动特性进行分析,结果表明:在坦克行进过程中,车体振动是影响炮口高低角位移的最主要因素。坦克垂向稳定器能有效控制坦克行进间摇架处的垂向振动,但身管柔性及身管衬瓦间隙会造成炮口处高低角位移明显大于摇架处,影响垂向稳定器工作效果。通过改进垂向稳定器的控制目标为炮口处高低角位移,可有效减小炮口处高低角位移,提高稳定精度。研究可为提高坦克高机动条件下的射击精度提供一定的参考。
 

Abstract

This work aims to studying a method on decreasing the muzzle vibration and improving the firing accuracy of move tanks under the influence of stabilizer.s Based on a PID control method, the paper simulated the vertical stabilizer of a tank in MATLAB/Simulink environment.A dynamic model of tank on the move was established based on the multi-body system theory, vehicle terramechanics and gun launch dynamics.Then through the RecurDyn/Control module, the electromechanical coupling dynamics model of moving tanks was established.The muzzle vibration characteristics of tanks on the move were analyzed.The numerical calculation results show that the hull vibration is the major influence on the muzzle vertical angular displacement of tanks on the move.The vertical stabilizer can control the vertical vibration of the cradle effectively.However, the muzzle vertical angular displacement is still greater than cradle’s significantly.It is not conducive to guarantee the stability effect of the stabilizer.By using the muzzle vertical angular displacement as control target of the vertical stabilizer, the muzzle vertical angular displacement can be reduced effectively.It can improve the stabilization accuracy.The research can provide certain reference for improving the firing accuracy of tanks under the condition of high mobility.

关键词

坦克 / 垂向稳定器 / PID控制 / 机电耦合 / 炮口振动

Key words

 tank / vertical stabilizer / PID control / electromechanical coupling / muzzle vibration

引用本文

导出引用
陈宇,杨国来. 稳定器作用下坦克行进间炮口振动特性研究[J]. 振动与冲击, 2019, 38(8): 21-27
CHEN Yu,YANG Guolai. A study on muzzle vibration characteristics of moving tanks under the influence of a stabilizer[J]. Journal of Vibration and Shock, 2019, 38(8): 21-27

参考文献

[1] 朱竞夫,赵碧君,王钦钊. 现代坦克火控系统[M]. 北京:国防工业出版社,2003.
[2] Gao Qiang, Sun Zhan, Yang Guolai, et al. A novel active disturbance rejection-based control strategy for a gun control system[J]. Journal of Mechanical Science and Technology, 2012, 26(12): 4141-4148.
[3] 刘志高,吕强,苏奎峰. 基于模糊控制的坦克炮控系统动态仿真[J]. 火炮发射与控制学报,1999,(3):25-30.
LIU Zhigao, LV Qiang, SU Kuifeng. Dynamic simulation of tank gun control system based on fuzzy control[J]. Journal of Gun Launch & Control, 1999, (3): 25-30.
[4] 刘国栋,祁志民,田建宇,等. 火炮伺服系统的鲁棒最优控制[J]. 火力与指挥控制,2012,37(S):68-70.
LIU Guodong, QI Zhimin, T IAN Jianyu, et al. Robust Optimal Control of Artillery Servo System[J]. Fire Control and Command Control, 2012, 37(S): 68-70.
[5] 刘飞飞,芮筱亭,于龙海,等. 考虑身管柔性的坦克行进间射击动力学研究[J]. 振动与冲击,2016,35(2): 58-63.
LIU Feifei, RUI Xiaoting, YU Hailong, et al. Influence of barrels’ flexibility on the launch dynamics of tank during marching fire [J]. Journal of Vibration and Shock, 2016, 35(2):58-63.
[6] LIU Feifei, RUI Xiaoting, YU Hailong, et al. Study on launch dynamics of the tank marching fire [J]. Journal of Shanghai Jiaotong University (Science), 2016, 21(04): 443-449.
[7] 徐达,胡俊彪,穆歌.基于刚柔耦合的坦克炮发射动力学仿真分析[J]. 装甲兵工程学院学报,2009,23 (4):45-47.
XU Da, HU Junbiao, MU Ge. Simulation analysis on tank gun firing dynamics based on rigid-flexible coupling[J]. Journal of Acadeny of Armored Force Engineering, 2009, 23( 4) : 45-47.
[8] 史力晨,王良曦,张兵志. 坦克—火炮系统行驶间振动建模与仿真[J]. 兵工学报,2008,20(3):103-106.
Shi Lichen, Wang Liangxi, Zhang Bingzhi. Modeling and simulation of a moving tank-gun system in vibration[J]. Acta Armamentarii, 2003, 24 ( 4 ) : 442-446.
[9] 金涛,严洪森,李东晓. 坦克行进间发射的PID控制[J]. 工业控制计算机, 2016, 29(7): 18-19.
Jin Tao, YAN Hongsen, LI Dongxiao. PID 
control for tank firing in motion[J]. Industrial Control Computer, 2016, 29(7): 18-19.
[10] Purdy DJ. Modelling and simulation of a weapon control system for a main battle tank [C]. Proceedings of the Eighth US Army Symposium on Gun Dynamics, Rhode Island, 1996: 14-16.
[11] 段宝岩. 电子装备机电耦合研究的现状与发展[J]. 中国科学:信息科学,2015,45(3):299-312.
DUAN Baoyan. Review of electromechanical coupling of electronic equipment[J]. Scientia Sinica(Informationis), 2015, 45(3): 299-312.
[12] 周启煌,单东升. 坦克火力控制系统[M]. 北京:国防工业出版社,1997.
[13] 季丽君. 某型号坦克交流伺服系统控制策略研究[D]. 南京:南京理工大学,2012.
JI Lijun. Research on control strategy of a certain tank AC servo system[D]. Nanjing: Nanjing University of Science and Technology, 2012.
[14] 廖常初. PID参数的意义与整定方法[J]. 自动化应用,2010,(5): 27-29.
LIAO Changchu. The meaning of PID controller parameters and setting method[J]. Automation Application, 2010, (5): 27-29.
[15] 谢润. 车载武器行进间发射动力学研究[D]. 南京:南京理工大学,2015.
[16] 吴参,王维锐,陈颖,等.三维路面谱的仿真建模与验证[J].浙江大学学报工学版,2009,43(10):1925-1938.
WU Can, WANG Weirui, CHEN Ying, et al. Simulation and validation of three-dimensional road surface spectrum [J]. Journal of Zhejiang University (Engineering Science), 2009, 43(10): 1925-1938.

PDF(2023 KB)

515

Accesses

0

Citation

Detail

段落导航
相关文章

/